精英家教网 > 高中数学 > 题目详情
5.若向量$\overrightarrow{a}$=(-2,2)与$\overrightarrow{b}$=(1,y)的夹角为钝角,则y的取值范围为(-∞,-1)∪(-1,1).

分析 判断出向量的夹角为钝角的充要条件是数量积为负且不反向,利用向量的数量积公式及向量共线的充要条件求出y的范围即可.

解答 解:向量$\overrightarrow{a}$=(-2,2)与$\overrightarrow{b}$=(1,y)的夹角为钝角,
∴$\overrightarrow{a}$•$\overrightarrow{b}$<0且不反向
即2y-2<0,-2y-2≠0
解得y<1,且y≠-1
∴y的取值范围(-∞,-1)∪(-1,1),
故答案为:(-∞,-1)∪(-1,1)

点评 本题主要考查了向量夹角的范围问题,通过向量数量积公式变形可以解决.但要注意数量积为负,夹角包括钝角和平角两类,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在数列{an}中,a1=4,nan+1-(n+1)an=2n2+2n.
(Ⅰ)求证:数列$\left\{{\frac{a_n}{n}}\right\}$是等差数列;
(Ⅱ)求数列$\left\{{\frac{1}{a_n}}\right\}$的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x∈R|0<x≤5},B={x∈R|log2(2-x)<2},则(∁RB)∩A=(  )
A.(-2,5]B.[-2,5]C.(2,5]D.[2,5]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知向量$\vec a=(sinx,-1),\vec b=(\sqrt{3}cosx,-\frac{1}{2})$,函数$f(x)=({\vec a+\vec b})•\vec a-1$.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)在△ABC中,a,b,c分别为△ABC三个内角A,B,C的对边,若$f(\frac{A}{2})=\frac{3}{2}$,a=2,求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=cos2x-sin2x+$\frac{1}{2}$,x∈(0,π).
(1)求f(x)的单调递增区间;
(2)锐角三角形△ABC中f(A)=0,a=$\sqrt{19}$,b=5.求△ABC的面积S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.直角坐标方程的x2+y2-2x+3y=0极坐标方程为ρ=2cosθ-3sinθ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某样本数据如表:由该样本数据得到的回归方程为$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$.若$\widehat{a}$=7.9,则$\widehat{b}$的值为(  )
x34567
y4.02.5-0.50.5-2.0
A.1.4B.-1.4C.1.2D.-1.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)满足xf′(x)-f(x)=xex且f(-1)=$\frac{1}{e}$,则x<0时f(x)=(  )
A.既有极大值又有极小值B.有极大值无极小值
C.既无极大值又无极小值D.有极小值无极大值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.曲线y=3lnx+x+2在点p0处的切线与直线x+4y-8=0垂直,则点p0的坐标是(  )
A.(0,1)B.(1,0)C.(1,-1)D.(1,3)

查看答案和解析>>

同步练习册答案