分析 判断出向量的夹角为钝角的充要条件是数量积为负且不反向,利用向量的数量积公式及向量共线的充要条件求出y的范围即可.
解答 解:向量$\overrightarrow{a}$=(-2,2)与$\overrightarrow{b}$=(1,y)的夹角为钝角,
∴$\overrightarrow{a}$•$\overrightarrow{b}$<0且不反向
即2y-2<0,-2y-2≠0
解得y<1,且y≠-1
∴y的取值范围(-∞,-1)∪(-1,1),
故答案为:(-∞,-1)∪(-1,1)
点评 本题主要考查了向量夹角的范围问题,通过向量数量积公式变形可以解决.但要注意数量积为负,夹角包括钝角和平角两类,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,5] | B. | [-2,5] | C. | (2,5] | D. | [2,5] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | 3 | 4 | 5 | 6 | 7 |
| y | 4.0 | 2.5 | -0.5 | 0.5 | -2.0 |
| A. | 1.4 | B. | -1.4 | C. | 1.2 | D. | -1.2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 既有极大值又有极小值 | B. | 有极大值无极小值 | ||
| C. | 既无极大值又无极小值 | D. | 有极小值无极大值 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1) | B. | (1,0) | C. | (1,-1) | D. | (1,3) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com