9£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=1+tcos¦Á\\ y=tsin¦Á\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2£®
£¨¢ñ£©Ö¤Ã÷£º²»ÂÛtΪºÎÖµ£¬Ö±ÏßlÓëÇúÏßCºãÓÐÁ½¸ö¹«¹²µã£»
£¨¢ò£©ÒÔ¦ÁΪ²ÎÊý£¬ÇóÖ±ÏßlÓëÇúÏßCÏཻËùµÃÏÒABµÄÖеã¹ì¼£µÄ²ÎÊý·½³Ì£¬²¢Åжϸù켣µÄÇúÏßÀàÐÍ£®

·ÖÎö £¨¢ñ£©ÓÉÇúÏßCµÄ¼«×ø±ê·½³ÌÇó³öÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪx2+y2=4£¬½«$\left\{\begin{array}{l}{x=1+tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$´úÈëx2+y2=4£¬µÃt2+2tcos¦Á-3=0£¬ÀûÓøùµÄÅбðʽÄÜÖ¤Ã÷²»ÂÛtΪºÎÖµ£¬Ö±ÏßlÓëÇúÏßCºãÓÐÁ½¸ö¹«¹²µã£®
£¨¢ò£©ÉèÖ±ÏßlÓëÇúÏß½»µãA¡¢B¶ÔÓ¦µÄ²ÎÊý·Ö±ðΪt1£¬t2£¬ÏÒABÖеãP¶ÔÓ¦²ÎÊýΪt0£¬ÓÉÖеã×ø±ê¹«Ê½Çó³ö${t}_{0}=\frac{{t}_{1}+{t}_{2}}{2}$=-cos¦Á£¬´úÈë$\left\{\begin{array}{l}{x=tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$ÖУ¬Äܵõ½ÏÒABµÄÖеãµÄ¹ì¼£·½³Ì£¬ÓÉ´ËÄÜÇó³ö½á¹û£®

½â´ð Ö¤Ã÷£º£¨¢ñ£©¡ßÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2£¬¡àÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪx2+y2=4£¬
½«$\left\{\begin{array}{l}{x=1+tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$´úÈëx2+y2=4£¬µÃt2+2tcos¦Á-3=0£¬£¨*£©
ÓÉ¡÷=£¨2cos¦Á£©2-4¡Á£¨-3£©£¾0£¬Öª·½³Ì£¨*£©ºãÓÐÁ½¸ö²»µÈʵ¸ù£¬
¹Ê²»ÂÛtΪºÎÖµ£¬Ö±ÏßlÓëÇúÏßCºãÓÐÁ½¸ö¹«¹²µã£®
½â£º£¨¢ò£©ÉèÖ±ÏßlÓëÇúÏß½»µãA¡¢B¶ÔÓ¦µÄ²ÎÊý·Ö±ðΪt1£¬t2£¬ÏÒABÖеãP¶ÔÓ¦²ÎÊýΪt0£¬
ÓÉ£¨*£©Öª${t}_{0}=\frac{{t}_{1}+{t}_{2}}{2}$=-cos¦Á£¬
´úÈë$\left\{\begin{array}{l}{x=tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$ÖУ¬ÕûÀí£¬µÃÏÒABµÄÖеãµÄ¹ì¼£·½³ÌΪ$\left\{\begin{array}{l}{x=1-co{s}^{2}¦Á}\\{y=-sin¦Ácos¦Á}\end{array}\right.$£¬
¼´$\left\{\begin{array}{l}{x=\frac{1-cos2¦Á}{2}}\\{y=-\frac{1}{2}sin2¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬¸ÃÇúÏßΪԲ£®

µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëÇúÏߺãÓÐÁ½¸ö¹«¹²µãµÄÖ¤Ã÷£¬¿¼²éÏÒµÄÖеã¹ì¼£µÄ²ÎÊý·½³ÌµÄÇ󷨣¬¿¼²é¼«×ø±ê·½³Ì¡¢Ö±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³ÌµÄ»¥»¯µÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑÖªÔ²×¶µÄ²àÃæÕ¹¿ªÍ¼Êǰ뾶Ϊ4£¬Ô²ÐĽǵÈÓÚ$\frac{¦Ð}{2}$µÄÉÈÐΣ¬ÔòÕâ¸öÔ²×¶µÄÌå»ýÊÇ$\frac{\sqrt{15}}{3}¦Ð$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªf£¨x£©=cos2x-sin2x+$\frac{1}{2}$£¬x¡Ê£¨0£¬¦Ð£©£®
£¨1£©Çóf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£»
£¨2£©Èñ½ÇÈý½ÇÐΡ÷ABCÖÐf£¨A£©=0£¬a=$\sqrt{19}$£¬b=5£®Çó¡÷ABCµÄÃæ»ýS¡÷ABC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Ä³Ñù±¾Êý¾ÝÈç±í£ºÓɸÃÑù±¾Êý¾ÝµÃµ½µÄ»Ø¹é·½³ÌΪ$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$£®Èô$\widehat{a}$=7.9£¬Ôò$\widehat{b}$µÄֵΪ£¨¡¡¡¡£©
x34567
y4.02.5-0.50.5-2.0
A£®1.4B£®-1.4C£®1.2D£®-1.2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÔÚ¼«×ø±êϵÖУ¬Çó°ë¾¶Îªr£¬Ô²ÐÄΪC$£¨{r£¬\frac{3}{2}¦Ð}£©$µÄÔ²µÄ¼«×ø±ê·½³Ì²¢ÇóËüµÄÖ±½Ç×ø±ê·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖªº¯Êýf£¨x£©Âú×ãxf¡ä£¨x£©-f£¨x£©=xexÇÒf£¨-1£©=$\frac{1}{e}$£¬Ôòx£¼0ʱf£¨x£©=£¨¡¡¡¡£©
A£®¼ÈÓм«´óÖµÓÖÓм«Ð¡ÖµB£®Óм«´óÖµÎÞ¼«Ð¡Öµ
C£®¼ÈÎÞ¼«´óÖµÓÖÎÞ¼«Ð¡ÖµD£®Óм«Ð¡ÖµÎÞ¼«´óÖµ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Ô²ÐÄÔÚ£¨1£¬0£©ÇÒ¹ý¼«µãµÄÔ²µÄ¼«×ø±ê·½³ÌΪ£¨¡¡¡¡£©
A£®¦Ñ=1B£®¦Ñ=cos ¦ÈC£®¦Ñ=2cos ¦ÈD£®¦Ñ=2sin ¦È

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÔ²ÐÄ·Ö±ðΪA£¨14£¬92£©£¬B£¨17£¬76£©£¬C£¨19£¬84£©µÄÈý¸öÔ²°ë¾¶Ïàͬ£¬Ö±Ïßl¹ýµãB£¬ÇÒλÓÚlͬ²àµÄÈý¸öÔ²¸÷²¿·ÖµÄÃæ»ýÖ®ºÍµÈÓÚÁíÒ»²àÈý¸öÔ²¸÷²¿·ÖµÄÃæ»ýÖ®ºÍ£¬ÔòÖ±ÏßlµÄбÂʵÄȡֵ¼¯ºÏΪ{-24}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®µÚ96½ì£¨´º¼¾£©È«¹úÌǾÆÉÌÆ·½»Ò×»áÓÚ2017Äê3ÔÂ23ÈÕÖÁ25ÈÕÔÚËÄ´¨¾Ù°ì£®½»Ò׻Ὺʼǰ£¬Õ¹¹Ý¸½½üÒ»¼Ò´¨²ËÌØÉ«²ÍÌüΪÁËÑо¿²Î»áÈËÊýÓë²ÍÌüËùÐèÔ­²ÄÁÏÊýÁ¿µÄ¹ØÏµ£¬²éÔÄÁË×î½ü5´Î½»Ò×»áµÄ²Î»áÈËÊýx£¨ÍòÈË£©Óë²ÍÌüËùÓÃÔ­²ÄÁÏÊýÁ¿t£¨´ü£©£¬µÃµ½ÈçÏÂÊý¾Ý£º
µÚÒ»´ÎµÚ¶þ´ÎµÚÈý´ÎµÚËĴεÚÎå´Î
²Î»áÈËÊýx£¨ÍòÈË£©11981012
Ô­²ÄÁÏt£¨´ü£©2823202529
£¨¢ñ£©Çë¸ù¾ÝËù¸øÎå×éÊý¾Ý£¬Çó³öt¹ØÓÚxµÄÏßÐԻع鷽³Ì$\hat t=\hat bx+\hat a$£»
£¨¢ò£©ÒÑÖª¹ºÂòÔ­²ÄÁϵķÑÓÃC£¨Ôª£©ÓëÊýÁ¿t£¨´ü£©µÄ¹ØÏµÎª$C=\left\{\begin{array}{l}300t+20£¬£¨{0£¼t£¼35£¬t¡ÊN}£©\\ 290t£¬£¨{t¡Ý35£¬t¡ÊN}£©\end{array}\right.$ͶÈëʹÓõÄÿ´üÔ­²ÄÁÏÏàÓ¦µÄÏúÊÛÊÕÈëΪ600Ôª£¬¶àÓàµÄÔ­²ÄÁÏÖ»ÄÜÎÞ³¥·µ»¹£®Èô²ÍÌüÔ­²ÄÁÏÏÖÇ¡ºÃÓÃÍ꣬¾ÝϤ±¾´Î½»Ò×»á´óÔ¼ÓÐ14ÍòÈ˲μӣ¬¸ù¾Ý£¨¢ñ£©ÖÐÇó³öµÄÏßÐԻع鷽³Ì£¬Ô¤²â²ÍÌüÓ¦¹ºÂò¶àÉÙ´üÔ­²ÄÁÏ£¬²ÅÄÜ»ñµÃ×î´óÀûÈó£¬×î´óÀûÈóÊǶàÉÙ£¿£¨×¢£ºÀûÈóL=ÏúÊÛÊÕÈë-Ô­²ÄÁÏ·ÑÓã©£®
£¨²Î¿¼¹«Ê½£º$\hat b=\frac{{\sum_{i=1}^n{£¨{{x_i}-\overline x}£©£¨{{y_i}-\overline y}£©}}}{{\sum_{i=1}^n{{{£¨{{x_i}-\overline x}£©}^2}}}}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$£¬$\hat a=\overline y-\hat b\overline x$£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸