精英家教网 > 高中数学 > 题目详情
18.在平面直角坐标系xOy中,已知圆心分别为A(14,92),B(17,76),C(19,84)的三个圆半径相同,直线l过点B,且位于l同侧的三个圆各部分的面积之和等于另一侧三个圆各部分的面积之和,则直线l的斜率的取值集合为{-24}.

分析 由题意可知A,C位于直线l两侧,它们到l的距离相等,列方程解出k即可.

解答 解:设直线l的方程为y-76=k(x-17),即kx-y-17k+76=0,
由题意可知A,C位于直线l两侧,且A到直线l的距离与C到直线l的距离相等,
∴(14k-92-17k+76)+(19k-84-17k+76)=0,
解得k=-24.
故答案为:{-24}.

点评 本题考查了直线与圆的位置关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若直线l:ax-y-a+3=0将关于x,y的不等式组$\left\{\begin{array}{l}x-2y+5≥0\\ x+y-1≥0\\ x-y+1≤0\end{array}\right.$表示的平面区域分成面积相等的两部分,则z=2x-ay的最小值为-6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知直线l的参数方程为$\left\{\begin{array}{l}x=1+tcosα\\ y=tsinα\end{array}\right.$(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2.
(Ⅰ)证明:不论t为何值,直线l与曲线C恒有两个公共点;
(Ⅱ)以α为参数,求直线l与曲线C相交所得弦AB的中点轨迹的参数方程,并判断该轨迹的曲线类型.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知曲线C1的方程为x2+y2-8x-10y+16=0.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.
(1)把C1的方程化为极坐标方程;
(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知正四面体的棱长为4,则此四面体的外接球的表面积是(  )
A.24πB.18πC.12πD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设等差数列{an}的前n项和为Sn,若a5=3,S10=40,则nSn的最小值为-32.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.西部大开发给中国西部带来了绿色,人与环境日期和谐,群众生活条件和各项基础设施得到了极大的改善.西部地区2009年至2015年农村居民家庭人均纯收入y(单位:千元)的数据如表:
年份2009201020112012201320142015
年份代号t1234567
人均纯收入y2.93.33.64.44.85.25.9
(1)求y关于x的线性回归方程;
(2)利用(1)中的回归方程,分析2009年至2015年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2017年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$(其中$\overline{x}$,$\overline{y}$为样本平均值).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在极坐标系中,设直线l过点A($\sqrt{3}$,$\frac{π}{6}$),B(a,0),且直线l与曲线C:ρ=cosθ有且只有一个公共点,求正数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知直线l的参数方程是$\left\{\begin{array}{l}x=1+0.8t\\ y=2+0.6t\end{array}\right.$(t为参数),则它的普通方程是3x-4y+5=0.

查看答案和解析>>

同步练习册答案