分析 先求得直线l的普通方程,把曲线C:ρ=acosθ(a>0)的极坐标方程化为直角坐标方程.因为直线l与曲线C有且只有一个公共点,可得圆心到直线的距离等于圆半径,由此解得a的值
解答 解:依题意,A($\sqrt{3}$,$\frac{π}{6}$),B(a,0)的直角坐标为A($\frac{3}{2}$,$\frac{\sqrt{3}}{2}$),B(a,0),
从而直线l的普通方程为$\frac{y}{x-a}=\frac{\frac{\sqrt{3}}{2}}{\frac{3}{2}-a}$,即$\sqrt{3}x+(2a-3)y-\sqrt{3}a$=0.
曲线C:ρ=cosθ的直角坐标方程为 (x-$\frac{1}{2}$)2+y2=$\frac{1}{4}$.
∵直线l与曲线C有且只有一个公共点,
∴$\frac{|\frac{\sqrt{3}}{2}-\sqrt{3}a|}{\sqrt{3+(2a-3)^{2}}}$=$\frac{1}{2}$,解得a=$\frac{3\sqrt{2}}{4}$或a=-$\frac{3\sqrt{2}}{4}$(舍).
∴正数a的值为$\frac{3\sqrt{2}}{4}$.
点评 本题考查实数值的求法,考查极坐标方程、直角坐标方程、参数方程的互化、点到直线的距离公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.
科目:高中数学 来源: 题型:选择题
| x | 3 | 4 | 5 | 6 | 7 |
| y | 4.0 | 2.5 | -0.5 | 0.5 | -2.0 |
| A. | 1.4 | B. | -1.4 | C. | 1.2 | D. | -1.2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1) | B. | (1,0) | C. | (1,-1) | D. | (1,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | $\frac{4}{3}$ | C. | $\frac{8}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
| 参会人数x(万人) | 11 | 9 | 8 | 10 | 12 |
| 原材料t(袋) | 28 | 23 | 20 | 25 | 29 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com