精英家教网 > 高中数学 > 题目详情
10.西部大开发给中国西部带来了绿色,人与环境日期和谐,群众生活条件和各项基础设施得到了极大的改善.西部地区2009年至2015年农村居民家庭人均纯收入y(单位:千元)的数据如表:
年份2009201020112012201320142015
年份代号t1234567
人均纯收入y2.93.33.64.44.85.25.9
(1)求y关于x的线性回归方程;
(2)利用(1)中的回归方程,分析2009年至2015年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2017年农村居民家庭人均纯收入.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$(其中$\overline{x}$,$\overline{y}$为样本平均值).

分析 (1)计算$\overline{x}$、$\overline{y}$,求出回归系数$\widehat{b}$、$\widehat{a}$,即可写出线性回归方程;
(2)由(1)中的线性回归方程知,斜率k>0,判断纯收入逐年增加,
再计算x=9时$\stackrel{∧}{y}$的值即可.

解答 解:(1)由题意,计算$\overline{x}$=$\frac{1}{7}$×(1+2+3+4+5+6+7)=4,
$\overline{y}$=$\frac{1}{7}$×(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3;
所以回归系数为
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$
=$\frac{(-3)×(-1.4)+(-2)×(-1)+…+3×1.6}{{(-3)}^{2}{+(-2)}^{2}+…{+3}^{2}}$
=0.5,
$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$=4.3-0.5×4=2.3,
所以y关于x的线性回归方程为$\stackrel{∧}{y}$=0.5x+2.3;
(2)由(1)中的线性回归方程$\stackrel{∧}{y}$=0.5x+2.3知,
斜率k=0.5>0,
所以2009年至2015年该地区农村居民家庭人均纯收入逐年增加,
平均每年增加0.5千元,
当x=9时,$\stackrel{∧}{y}$=0.5×9+2.3=6.8,
即预测该地区2017年农村居民家庭人均纯收入为6.8千元.

点评 本题考查了计算平均数与线性回归方程的应用问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知f(x)=cos2x-sin2x+$\frac{1}{2}$,x∈(0,π).
(1)求f(x)的单调递增区间;
(2)锐角三角形△ABC中f(A)=0,a=$\sqrt{19}$,b=5.求△ABC的面积S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.圆心在(1,0)且过极点的圆的极坐标方程为(  )
A.ρ=1B.ρ=cos θC.ρ=2cos θD.ρ=2sin θ

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在平面直角坐标系xOy中,已知圆心分别为A(14,92),B(17,76),C(19,84)的三个圆半径相同,直线l过点B,且位于l同侧的三个圆各部分的面积之和等于另一侧三个圆各部分的面积之和,则直线l的斜率的取值集合为{-24}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(Ⅰ)将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.写出C的参数方程;
(Ⅱ)极坐标系下,求直线ρcos(θ-$\frac{π}{4}$)=$\sqrt{2}$与圆ρ=2的公共点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.曲线y=3lnx+x+2在点p0处的切线与直线x+4y-8=0垂直,则点p0的坐标是(  )
A.(0,1)B.(1,0)C.(1,-1)D.(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.欲用系统抽样的方法从1000人中抽取50人做问卷调查.为此,将他们随机编号为1,2,…,1000,分组后,已知在第一组中采用抽签法抽到的号码为8.若编号在区间[1,400]上的人做问卷A;编号在区间[401,750]上的人做问卷B,其余的人做问卷C.则做问卷C的人数是12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.第96届(春季)全国糖酒商品交易会于2017年3月23日至25日在四川举办.交易会开始前,展馆附近一家川菜特色餐厅为了研究参会人数与餐厅所需原材料数量的关系,查阅了最近5次交易会的参会人数x(万人)与餐厅所用原材料数量t(袋),得到如下数据:
第一次第二次第三次第四次第五次
参会人数x(万人)11981012
原材料t(袋)2823202529
(Ⅰ)请根据所给五组数据,求出t关于x的线性回归方程$\hat t=\hat bx+\hat a$;
(Ⅱ)已知购买原材料的费用C(元)与数量t(袋)的关系为$C=\left\{\begin{array}{l}300t+20,({0<t<35,t∈N})\\ 290t,({t≥35,t∈N})\end{array}\right.$投入使用的每袋原材料相应的销售收入为600元,多余的原材料只能无偿返还.若餐厅原材料现恰好用完,据悉本次交易会大约有14万人参加,根据(Ⅰ)中求出的线性回归方程,预测餐厅应购买多少袋原材料,才能获得最大利润,最大利润是多少?(注:利润L=销售收入-原材料费用).
(参考公式:$\hat b=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在的内角A,B,C的对边分别是a,b,c;若a,b,c成等比数列,且c=2a,求角B的余弦值.

查看答案和解析>>

同步练习册答案