精英家教网 > 高中数学 > 题目详情
10.已知圆锥的侧面展开图是半径为4,圆心角等于$\frac{π}{2}$的扇形,则这个圆锥的体积是$\frac{\sqrt{15}}{3}π$.

分析 首先求出底面圆的半径,再利用勾股定理求出圆锥的高,代入圆锥体积公式,可得答案.

解答 解:∵圆锥的侧面展开图是圆心角为$\frac{π}{2}$、半径为4的扇形,
圆锥的母线l:4,
解得圆锥的底面周长:2π,半径:r=1,
∴这个圆锥的高是:h=$\sqrt{16-1}$=$\sqrt{15}$.
故圆锥的体积:V=$\frac{1}{3}$πr2h=$\frac{\sqrt{15}}{3}π$,
故答案为:$\frac{\sqrt{15}}{3}π$.

点评 本题考查了圆锥体积的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的一个焦点与${y^2}=4\sqrt{3}x$的焦点重合,点$(\sqrt{3},\frac{1}{2})$在椭圆C上.
(1)求椭圆C的方程;
(2)设直线l:y=kx+m(k≠0)与椭圆交于P,Q两点,且以PQ为对角线的菱形的一顶点为(-1,0),若$|PQ|=\frac{{2\sqrt{6}}}{3}$,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知复数z=a+i(a∈R).若$|z|<\sqrt{2}$,则z+i2在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB=AC=$\frac{1}{2}$AA1=a,AB⊥AC,D是棱BB1的中点.
(Ⅰ)证明:平面A1DC⊥平面ADC
(Ⅱ)求平面A1DC将此三棱柱分成的两部分的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若$a={log_{\frac{1}{π}}}\frac{1}{3}$,$b={e^{\frac{π}{3}}}$,$c={log_3}cos\frac{1}{5}π$,则(  )
A.b>c>aB.b>a>cC.a>b>cD.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点A(-2,0),且点(-1,$\frac{3}{2}$)在椭圆上,F1、F2分别是椭圆的左、右焦点.过点A作斜率为k(k>0)的直线交椭圆E于另一点B,直线BF2交椭圆E于点C.
(1)求椭圆E的标准方程;
(2)若△CF1F2为等腰三角形,求点B的坐标;
(3)若F1C⊥AB,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.对任意k∈[1,5],直线l:y=kx-k-1都与平面区域$\left\{\begin{array}{l}x≥a\\ x+y≤6\\ x-2y≤0\end{array}\right.$有公共点,则实数a的最大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若直线l:ax-y-a+3=0将关于x,y的不等式组$\left\{\begin{array}{l}x-2y+5≥0\\ x+y-1≥0\\ x-y+1≤0\end{array}\right.$表示的平面区域分成面积相等的两部分,则z=2x-ay的最小值为-6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知直线l的参数方程为$\left\{\begin{array}{l}x=1+tcosα\\ y=tsinα\end{array}\right.$(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2.
(Ⅰ)证明:不论t为何值,直线l与曲线C恒有两个公共点;
(Ⅱ)以α为参数,求直线l与曲线C相交所得弦AB的中点轨迹的参数方程,并判断该轨迹的曲线类型.

查看答案和解析>>

同步练习册答案