精英家教网 > 高中数学 > 题目详情
11.已知α为锐角,若cos(α+$\frac{π}{4}$)=$\frac{5}{13}$,则sinα=(  )
A.$\frac{5\sqrt{2}}{13}$B.$\frac{12}{13}$C.$\frac{7\sqrt{2}}{26}$D.$\frac{17\sqrt{2}26}{\;}$

分析 由α为锐角求出α+$\frac{π}{4}$的范围,利用同角三角函数间的基本关系求出sin(α+$\frac{π}{4}$)的值,所求式子中的角变形后,利用两角和与差的正弦函数公式化简,将各自的值代入计算即可求出值.

解答 解:∵α为锐角,∴α+$\frac{π}{4}$∈($\frac{π}{4}$,$\frac{3π}{4}$),
∵cos(α+$\frac{π}{4}$)=$\frac{5}{13}$,
∴sin(α+$\frac{π}{4}$)=$\sqrt{1-co{s}^{2}(α+\frac{π}{4})}$=$\frac{12}{13}$,
则sinα=sin[(α+$\frac{π}{4}$)-$\frac{π}{4}$]=sin(α+$\frac{π}{4}$)cos$\frac{π}{4}$-cos(α+$\frac{π}{4}$)sin$\frac{π}{4}$=$\frac{12}{13}$×$\frac{\sqrt{2}}{2}$-$\frac{5}{13}×\frac{\sqrt{2}}{2}$=$\frac{7\sqrt{2}}{26}$.
故选:C.

点评 此题考查了两角和与差的余弦函数公式,熟练掌握公式是解本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.将正方形ABCD沿对角线BD折成直二面角后的图形如图所示,若E为线段BC的中点,则直线AE与平面ABD所成角的余弦为(  )
A.$\frac{1}{4}$B.$\frac{{\sqrt{6}}}{6}$C.$\frac{{\sqrt{30}}}{6}$D.$\frac{{\sqrt{15}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知点P在抛物线y2=x上,点Q在圆(x+$\frac{1}{2}$)2+(y-4)2=1上,则|PQ|的最小值为(  )
A.$\frac{{3\sqrt{5}}}{2}-1$B.$\frac{{3\sqrt{3}}}{2}-1$C.$2\sqrt{3}-1$D.$\sqrt{10}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.以直角坐标系原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{1}{2}+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数,0<α<π),曲线C的极坐标方程ρ=$\frac{2cosθ}{si{n}^{2}θ}$.
(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A,B两点,已知定点P($\frac{1}{2},\;0$),当α=$\frac{π}{3}$时,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在数列{an}中,a1=4,nan+1-(n+1)an=2n2+2n.
(Ⅰ)求证:数列$\left\{{\frac{a_n}{n}}\right\}$是等差数列;
(Ⅱ)求数列$\left\{{\frac{1}{a_n}}\right\}$的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知实数x,y满足不等式$\left\{\begin{array}{l}{y≤x+2}\\{x+y≤4}\\{y≥0}\end{array}\right.$,则x+2y的最大值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在直角坐标系xoy中,直线l:$\left\{\begin{array}{l}x=-\sqrt{2}+tcosα\\ y=tsinα\end{array}\right.(t为参数,0≤α<\frac{π}{2})$,在以原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C:${ρ^2}=\frac{3}{{1+2{{sin}^2}θ}}(0≤θ<2π)$,若直线与y轴正半轴交于点M,与曲线C交于A、B两点,其中点A在第一象限.
(Ⅰ)求曲线C的直角坐标方程及点M对应的参数tM(用α表示);
(Ⅱ)设曲线C的左焦点为F1,若|F1B|=|AM|,求直线l的倾斜角α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=$\frac{π}{4}$,则椭圆和双曲线的离心率乘积的最小值为(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.直角坐标方程的x2+y2-2x+3y=0极坐标方程为ρ=2cosθ-3sinθ.

查看答案和解析>>

同步练习册答案