分析 (Ⅰ)由${ρ^2}=\frac{3}{{1+2{{sin}^2}θ}}$,得ρ2+2ρ2sin2θ=3,利用x=ρcosθ,y=ρsinθ,ρ2=x2+y2,能求出曲线C的直角坐标方程;由题意可知点M的横坐标为0,代入$x=-\sqrt{2}+tcosα=0$,由此能求出点M对应的参数tM.
(Ⅱ)直线过定点${F_1}(-\sqrt{2},0)$,将$\left\{\begin{array}{l}x=-\sqrt{2}+tcosα\\ y=tsinα\end{array}\right.(t为参数,0≤α<\frac{π}{2})$代入$\frac{x^2}{3}+{y^2}=1$,得$(1+2{sin^2}α){t^2}-2\sqrt{2}cosαt-1=0$,由此利用|F1B|=|AM|,能求出直线l的倾斜角α的值.
解答 解:(Ⅰ)由${ρ^2}=\frac{3}{{1+2{{sin}^2}θ}}$得ρ2+2ρ2sin2θ=3,
∵x=ρcosθ,y=ρsinθ,ρ2=x2+y2,
∴曲线C的直角坐标方程为$\frac{x^2}{3}+{y^2}=1$.…(2分),
又由题意可知点M的横坐标为0,
代入$x=-\sqrt{2}+tcosα=0$,∴${t_M}=\frac{{\sqrt{2}}}{cosα}$…(4分)
(Ⅱ)由(Ⅰ)知,直线过定点${F_1}(-\sqrt{2},0)$,
将$\left\{\begin{array}{l}x=-\sqrt{2}+tcosα\\ y=tsinα\end{array}\right.(t为参数,0≤α<\frac{π}{2})$代入$\frac{x^2}{3}+{y^2}=1$,
化简可得$(1+2{sin^2}α){t^2}-2\sqrt{2}cosαt-1=0$,
设A、B对应的参数分别为t1,t2,
∵|F1B|=|AM|,∴|t1+t2|=|tM|,sinα=$±\frac{1}{2}$,
∴0$≤α<\frac{π}{2}$,∴α=$\frac{π}{6}$.…(10分)
点评 本题考查曲线的直角坐标方程的求法,考查角的求法,考查极坐标方程、直角坐标方程、参数方程的互化,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5\sqrt{2}}{13}$ | B. | $\frac{12}{13}$ | C. | $\frac{7\sqrt{2}}{26}$ | D. | $\frac{17\sqrt{2}26}{\;}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com