分析 根据约束条件画出可行域,再利用几何意义求最值,z=x-y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最小值即可.
解答
解:变量x,y满足约束条件$\left\{\begin{array}{l}x≥2\\ x+y≤6\\ x-2y≤0\end{array}\right.$,不等式组表示的平面区域如图所示,
当直线z=x-y过点A时,z取得最大值,
由$\left\{\begin{array}{l}{x+y=6}\\{x-2y=0}\end{array}\right.$,可得A(4,2)时,
在y轴上截距最小,此时z取得最大值2.
故答案为:2;
点评 本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{3\sqrt{5}}}{2}-1$ | B. | $\frac{{3\sqrt{3}}}{2}-1$ | C. | $2\sqrt{3}-1$ | D. | $\sqrt{10}-1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | 1 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,5] | B. | [-2,5] | C. | (2,5] | D. | [2,5] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 672 | B. | -672 | C. | -762 | D. | 762 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\hat y=2.3x-0.7$ | B. | $\hat y=2.3x+0.7$ | C. | $\hat y=0.7x-2.3$ | D. | $\hat y=0.7x+2.3$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com