| A. | $\frac{1}{4}$ | B. | $\frac{{\sqrt{6}}}{6}$ | C. | $\frac{{\sqrt{30}}}{6}$ | D. | $\frac{{\sqrt{15}}}{4}$ |
分析 取DB中点O,连接CO、AO,过E作EH∥CO交DB于H,则有EH⊥面ADB.H为OB中点,连接AH,则∠EAH就是直线AE与平面ABD所成的角;在Rt△AHE中可求得直线AE与平面ABD所成角的余弦
解答
解:如图所示,取DB中点O,连接CO、AO,
∵四边形ABCD为正方形,∴CO⊥DB.
又∵面DCB⊥面ADB,∴CO⊥面ABD,
过E作EH∥CO交DB于H,则有EH⊥面ADB.H为OB中点,
连接AH,则∠EAH就是直线AE与平面ABD所成的角.
设正方形ABCD的边长为2,则EH=$\frac{\sqrt{2}}{2}$,
AH=$\sqrt{A{O}^{2}+O{H}^{2}}=\frac{\sqrt{10}}{2}$,∴$AE=\sqrt{A{H}^{2}+E{H}^{2}}=\sqrt{3}$,
cos∠EAH=$\frac{AH}{AE}=\frac{\sqrt{30}}{6}$,∴直线AE与平面ABD所成角的余弦为$\frac{\sqrt{30}}{6}$.
故选:C.
点评 本题考查了面面垂直的性质,线面角的求解,考查了转化思想,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | n | B. | n-1 | C. | $\frac{n(n-1)}{2}$ | D. | $\frac{1}{2}$n(n+1) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5\sqrt{2}}{13}$ | B. | $\frac{12}{13}$ | C. | $\frac{7\sqrt{2}}{26}$ | D. | $\frac{17\sqrt{2}26}{\;}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com