精英家教网 > 高中数学 > 题目详情
6.“${(\frac{1}{3})^a}<{(\frac{1}{3})^b}$”是“log2a>log2b”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 由“${(\frac{1}{3})^a}<{(\frac{1}{3})^b}$”?a>b,“log2a>log2b”?a>b>0.即可判断出结论.

解答 解:“${(\frac{1}{3})^a}<{(\frac{1}{3})^b}$”?a>b,
“log2a>log2b”?a>b>0.
∴“${(\frac{1}{3})^a}<{(\frac{1}{3})^b}$”是“log2a>log2b”的必要不充分条件.
故选:B.

点评 本题考查了函数的单调性、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.等比数列{an}的各项均为正数,且a1+2a2=4,a42=4a3a7,则a5=(  )
A.$\frac{1}{8}$B.$\frac{1}{16}$C.20D.40

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xoy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=2+2cosθ\\ y=2sinθ\end{array}\right.$(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2的极坐标方程为$ρ=\sqrt{3}sinθ+cosθ$,曲线C3的极坐标方程为$θ=\frac{π}{6}$.
(1)把曲线C1的参数方程化为极坐标方程;
(2)曲线C3与曲线C1交于O,A,与曲线C2交于O,B,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若圆x2+y2-12x+16=0与直线y=kx交于不同的两点,则实数k的取值范围为(  )
A.(-$\sqrt{3}$,$\sqrt{3}$)B.(-$\sqrt{5}$,$\sqrt{5}$)C.(-$\frac{\sqrt{5}}{2}$,$\frac{\sqrt{5}}{2}$)D.(-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.将正方形ABCD沿对角线BD折成直二面角后的图形如图所示,若E为线段BC的中点,则直线AE与平面ABD所成角的余弦为(  )
A.$\frac{1}{4}$B.$\frac{{\sqrt{6}}}{6}$C.$\frac{{\sqrt{30}}}{6}$D.$\frac{{\sqrt{15}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和Sn满足Sn=2an-a1,且a1,a2+1,a3成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{2^n}{{{S_n}{S_{n+1}}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}的前n项和Sn满足Sn=2an-a1,且a1,a2+1,a3成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=2log2an-1,求数列$\{\frac{1}{{{b_n}{b_{n+1}}}}\}$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在四棱锥P-ABCD中,PC⊥底面ABCD,M,N分别是PD,PA的中点,AC⊥AD,∠ACD=∠ACB=60°,PC=AC.
(1)求证:PA⊥平面CMN;
(2)求证:AM∥平面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知实数x,y满足不等式$\left\{\begin{array}{l}{y≤x+2}\\{x+y≤4}\\{y≥0}\end{array}\right.$,则x+2y的最大值为7.

查看答案和解析>>

同步练习册答案