17£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxoyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2+2cos¦È\\ y=2sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ$¦Ñ=\sqrt{3}sin¦È+cos¦È$£¬ÇúÏßC3µÄ¼«×ø±ê·½³ÌΪ$¦È=\frac{¦Ð}{6}$£®
£¨1£©°ÑÇúÏßC1µÄ²ÎÊý·½³Ì»¯Îª¼«×ø±ê·½³Ì£»
£¨2£©ÇúÏßC3ÓëÇúÏßC1½»ÓÚO£¬A£¬ÓëÇúÏßC2½»ÓÚO£¬B£¬Çó|AB|£®

·ÖÎö £¨1£©ÇúÏßC1µÄ²ÎÊý·½³ÌÏûÈ¥²ÎÊý¦ÈµÃÇúÏßC1µÄÆÕͨ·½³Ì£¬ÓÉx=¦Ñcos¦È£¬y=¦Ñsin¦È£¬ÄÜÇó³öÇúÏßC1µÄ¼«×ø±ê·½³Ì£®
£¨2£©ÉèµãAµÄ¼«×ø±êΪ£¨${¦Ñ}_{1}£¬\frac{¦Ð}{6}$£©£¬µãBµÄ¼«×ø±êΪ£¨${¦Ñ}_{2}£¬\frac{¦Ð}{6}$£©£¬Ôò${¦Ñ}_{1}=4cos\frac{¦Ð}{6}=2\sqrt{3}$£¬${¦Ñ}_{2}=\sqrt{3}sin\frac{¦Ð}{6}+cos\frac{¦Ð}{6}$=$\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}=\sqrt{3}$£¬ÓÉ´ËÄÜÇó³ö|AB|£®

½â´ð ½â£º£¨1£©¡ßÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2+2cos¦È\\ y=2sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬
¡àÏûÈ¥²ÎÊý¦ÈµÃÇúÏßC1µÄÆÕͨ·½³ÌΪ£¨x-2£©2+y2=4£¬¼´x2+y2-4x=0£¬
ÓÉx=¦Ñcos¦È£¬y=¦Ñsin¦È£¬µÃÇúÏßC1µÄ¼«×ø±ê·½³ÌΪ¦Ñ2=4cos¦È£®
£¨2£©ÉèµãAµÄ¼«×ø±êΪ£¨${¦Ñ}_{1}£¬\frac{¦Ð}{6}$£©£¬µãBµÄ¼«×ø±êΪ£¨${¦Ñ}_{2}£¬\frac{¦Ð}{6}$£©£¬
Ôò${¦Ñ}_{1}=4cos\frac{¦Ð}{6}=2\sqrt{3}$£¬${¦Ñ}_{2}=\sqrt{3}sin\frac{¦Ð}{6}+cos\frac{¦Ð}{6}$=$\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}=\sqrt{3}$£¬
¡à|AB|=|¦Ñ1-¦Ñ2|=$\sqrt{3}$£®

µãÆÀ ±¾Ì⿼²éÖ±Ïߵļ«×ø±ê·½³ÌµÄÇ󷨣¬¿¼²éÏ߶㤵ÄÇ󷨣¬¿¼²é¼«×ø±ê·½³Ì¡¢Ö±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³ÌµÄ»¥»¯£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®½«ÇúÏߵIJÎÊý·½³Ì$\left\{\begin{array}{l}x=4\sqrt{t}+\frac{1}{{\sqrt{t}}}\\ y=4\sqrt{t}-\frac{1}{{\sqrt{t}}}\end{array}\right.£¨t$Ϊ²ÎÊý£©»¯ÎªÆÕͨ·½³ÌΪ£¨¡¡¡¡£©
A£®x2+y2=16B£®x2+y2=16£¨x¡Ý4£©C£®x2-y2=16D£®x2-y2=16£¨x¡Ý4£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªf¡ä£¨x£©Îªº¯Êýf£¨x£©µÄµ¼º¯Êý£¬ÇÒ$f£¨x£©=\frac{1}{2}{x^2}-f£¨0£©+f'£¨1£©{e^{x-1}}$£¬Èô$g£¨x£©=f£¨x£©-\frac{1}{2}{x^2}+x$£¬Ôò·½³Ì$g£¨\frac{x^2}{a}-x£©-x=0$ÓÐÇÒ½öÓÐÒ»¸ö¸ùʱ£¬aµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[1£¬+¡Þ£©B£®£¨-¡Þ£¬1]C£®£¨0£¬1]D£®£¨-¡Þ£¬0£©¡È{1}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Ö´ÐÐÈçͼµÄ³ÌÐò¿òͼ£¬Èç¹ûÊäÈëµÄa=6£¬b=4£¬ÄÇôÊä³öµÄsµÄֵΪ£¨¡¡¡¡£©
A£®17B£®22C£®18D£®20

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖªf£¨x£©=1+£¨1+x£©+£¨1+x£©2+£¨1+x£©3+¡­+£¨1+x£©n£¬Ôòf'£¨0£©=£¨¡¡¡¡£©
A£®nB£®n-1C£®$\frac{n£¨n-1£©}{2}$D£®$\frac{1}{2}$n£¨n+1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖªÔ²E£ºx2+y2-2x=0£¬ÈôAΪֱÏßl£ºx+y+m=0Éϵĵ㣬¹ýµãA¿É×÷Á½ÌõÖ±ÏßÓëÔ²E·Ö±ðÇÐÓÚµãB£¬C£¬ÇÒ¡÷ABCΪÕýÈý½ÇÐΣ¬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇ[-2$\sqrt{2}-1$£¬2$\sqrt{2}-1$]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖªÕýÁù±ßÐÎABCDEFµÄ±ß³¤Îª1£¬Ôò$\overrightarrow{AF}$•$\overrightarrow{BD}$µÄֵΪ$\frac{3}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®¡°${£¨\frac{1}{3}£©^a}£¼{£¨\frac{1}{3}£©^b}$¡±ÊÇ¡°log2a£¾log2b¡±µÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªa¡ÊR£¬Ôò¡°a£¼0¡±ÊÇ¡°|x|+|x+1|£¾aºã³ÉÁ¢¡±µÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸