精英家教网 > 高中数学 > 题目详情
2.已知圆E:x2+y2-2x=0,若A为直线l:x+y+m=0上的点,过点A可作两条直线与圆E分别切于点B,C,且△ABC为正三角形,则实数m的取值范围是[-2$\sqrt{2}-1$,2$\sqrt{2}-1$].

分析 由△ABC为正三角形,可得直线上的点与圆心的连线与切线的夹角为30°,求出直线与圆心连线的距离的最大值,转化求解即可.

解答 解:圆E:x2+y2-2x=0,圆心(1,0),半径为1,若A为直线l:x+y+m=0上的点,过点A可作两条直线与圆E分别切于点B,C,且△ABC为正三角形,可得圆心到直线的距离的最大值为:2,此时直线上的点与圆心的连线与切线的夹角为30°,否则不满足题意.
可得:$\frac{|1+m|}{\sqrt{2}}≤2$,
解得m∈[-2$\sqrt{2}-1$,2$\sqrt{2}-1$].
故答案为:[-2$\sqrt{2}-1$,2$\sqrt{2}-1$].

点评 本题考查直线与圆的方程的应用,切线方程的关系,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知双曲线M:$\frac{y^2}{a^2}-\frac{x^2}{b^2}$=1(a>0,b>0)的上焦点为F,上顶点为A,B为虚轴的端点,离心率e=$\frac{{2\sqrt{3}}}{3}$,且S△ABF=1-$\frac{{\sqrt{3}}}{2}$.抛物线N的顶点在坐标原点,焦点为F.
(1)求双曲线M和抛物线N的方程;
(2)设动直线l与抛物线N相切于点P,与抛物线的准线相交于点Q,则以PQ为直径的圆是否恒过y轴上的一个定点?如果经过,试求出该点的坐标,如果不经过,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知点P在函数f(x)=xex的图象上.
(Ⅰ)求曲线y=f(x)在点P(1,f(1))处的切线方程;
(II)求函数y=f(x)的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图是一个几何体的三视图,则该几何体的体积为(  )
A.2+πB.$3+\frac{π}{2}$C.3+πD.$4+\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xoy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=2+2cosθ\\ y=2sinθ\end{array}\right.$(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2的极坐标方程为$ρ=\sqrt{3}sinθ+cosθ$,曲线C3的极坐标方程为$θ=\frac{π}{6}$.
(1)把曲线C1的参数方程化为极坐标方程;
(2)曲线C3与曲线C1交于O,A,与曲线C2交于O,B,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在平面直角坐标系xOy中,若双曲线$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{m}$=1(m>0)的离心率为$\frac{\sqrt{6}}{2}$,则该双曲线的两条渐近线方程是y=±$\sqrt{2}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若圆x2+y2-12x+16=0与直线y=kx交于不同的两点,则实数k的取值范围为(  )
A.(-$\sqrt{3}$,$\sqrt{3}$)B.(-$\sqrt{5}$,$\sqrt{5}$)C.(-$\frac{\sqrt{5}}{2}$,$\frac{\sqrt{5}}{2}$)D.(-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和Sn满足Sn=2an-a1,且a1,a2+1,a3成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{2^n}{{{S_n}{S_{n+1}}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,已知函数y=2kx(k>0)与函数y=x2的图象所围成的阴影部分的面积为$\frac{32}{3}$,则实数k的值为2.

查看答案和解析>>

同步练习册答案