精英家教网 > 高中数学 > 题目详情
2.某投资公司现提供两种一年期投资理财方案,一年后投资盈亏的情况如表:
投资股市获利40%不赔不赚亏损20%购买基金获利20%不赔不赚亏损10%
概率P$\frac{1}{2}$$\frac{1}{8}$$\frac{3}{8}$概率Pp$\frac{1}{3}$q
( I)甲、乙两人在投资顾问的建议下分别选择“投资股市”和“购买基金”,若一年后他们中至少有一人盈利的概率大于$\frac{4}{5}$,求p的取值范围;
( II)某人现有10万元资金,决定在“投资股市”和“购买基金”这两种方案中选出一种,若购买基金现阶段分析出$p=\frac{1}{2}$,那么选择何种方案可使得一年后的投资收益的数学期望值较大?

分析 ( I)设事件A为“甲投资股市且盈利”,事件B为“乙购买基金且盈利”,事件C为“一年后甲、乙中至少有一人盈利”,则$C=A\overline B∪\overline AB∪AB$,其中A,B相互独立.利用相互独立事件、互斥事件的概率计算公式即可得出概率.
( II)假设此人选择“投资股市”,记ξ为盈利金额(单位万元),可得ξ的分布列为.假设此人选择“购买基金”,记η为盈利金额(单位万元),可得η的分布列,计算即可比较出大小关系.

解答 解:( I)设事件A为“甲投资股市且盈利”,事件B为“乙购买基金且盈利”,事件C为“一年后甲、乙中至少有一人盈利”,则$C=A\overline B∪\overline AB∪AB$,其中A,B相互独立.…2分
因为$P(A)=\frac{1}{2},P(B)=p$,则$P(C)=P(A\overline B)+P(\overline AB)+P(AB)$,即$P(C)=\frac{1}{2}(1-p)+(1-\frac{1}{2})p+\frac{1}{2}p=\frac{1}{2}(1+p)$,
由$\frac{1}{2}(1+p)>\frac{4}{5}$解得$p>\frac{3}{5}$;…4分
又因为$p+\frac{1}{3}+q=1$且q≥0,所以$p≤\frac{2}{3}$,故$\frac{3}{5}<p≤\frac{2}{3}$.…6分
( II)假设此人选择“投资股市”,记ξ为盈利金额(单位万元),则ξ的分布列为:

ξ40-2
P$\frac{1}{2}$$\frac{1}{8}$$\frac{3}{8}$
则$Eξ=4×\frac{1}{2}+0×\frac{1}{8}-2×\frac{3}{8}=\frac{5}{4}$;…8分
假设此人选择“购买基金”,记η为盈利金额(单位万元),则η的分布列为:
η20-1
P$\frac{1}{2}$$\frac{1}{3}$$\frac{1}{6}$
则$Eη=2×\frac{1}{2}+0×\frac{1}{3}-1×\frac{1}{6}=\frac{5}{6}$;…10分
因为$\frac{5}{4}>\frac{5}{6}$,即Eξ>Eη,所以应选择“投资股市”可使得一年后的投资收益的数学期望值较大.…12分.

点评 本题考查了相互独立事件、互斥事件的概率计算公式、随机变量的分布列与数学期望,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.如图,已知函数y=2kx(k>0)与函数y=x2的图象所围成的阴影部分的面积为$\frac{32}{3}$,则实数k的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥P-ABCD中,底面ABCD为梯形,CD∥AB,AB=2CD,AC交BD于O,锐角△PAD所在平面⊥底面ABCD,PA⊥BD,点Q在侧棱PC上,且PQ=2QC.
求证:(1)PA∥平面QBD;
(2)BD⊥AD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=$\sqrt{-x}+\sqrt{x(x+1)}$的定义域为{x|x≤-1或x=0}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若实数a,b均不为零,且x2a=$\frac{1}{x^b}$(x>0),则(xa-2xb9展开式中的常数项等于(  )
A.672B.-672C.-762D.762

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}和{bn},其中an=n2,n∈N*,{bn}的项是互不相等的正整数,若对于任意n∈N*,{bn}的第an项等于{an}的第bn项,则$\frac{lg({b}_{1}{b}_{4}{b}_{9}{b}_{16})}{lg({b}_{1}{b}_{2}{b}_{3}{b}_{4})}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系xoy中,曲线C1的普通方程为x2+y2+2x-4=0,曲线C2的参数方程为$\left\{\begin{array}{l}x={t^2}\\ y=t\end{array}\right.$(t为参数),以坐标原点O为极点,x轴的正半轴为极轴的极坐标系.
(1)求曲线C1,C2的极坐标方程;
(2)求曲线C1与C2交点的极坐标(ρ,θ),其中ρ≥0,0≤θ<2π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知常数p>0,数列{an}满足an+1=|p-an|+2an+p,n∈N*.
(1)若a1=-1,p=1,
①求a4的值;
②求数列{an}的前n项和Sn
(2)若数列{an}中存在三项ar,as,at(r,s,t∈N*,r<s<t)依次成等差数列,求$\frac{{a}_{1}}{p}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=lnx+\frac{m}{x}+3x$.
(1)求函数f(x)的单调区间;
(2)若对任意的m∈[0,2],不等式f(x)≤(k+1)x,对x∈[1,e]恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案