精英家教网 > 高中数学 > 题目详情
1.已知函数$f(x)=lnx+\frac{m}{x}+3x$.
(1)求函数f(x)的单调区间;
(2)若对任意的m∈[0,2],不等式f(x)≤(k+1)x,对x∈[1,e]恒成立,求实数k的取值范围.

分析 (1)求出$f'(x)=\frac{1}{x}-\frac{m}{x^2}+3=\frac{{3{x^2}+x-m}}{x^2}$,分①当-m≥0,②当m>0讨论即可;
(2)对?m∈[0,2],f(x)≤(k+1)x,即$lnx+\frac{m}{x}+3x≤({k+1})x$,
又x>0,即m≤(k+1)x2-3x2-xlnx恒成立,(k+1)x2-3x2-xlnx≥2,可得$k≥\frac{2}{x^2}+\frac{lnx}{x}+2$.
令$g(x)=\frac{lnx}{x}+\frac{2}{x^2}+2$,利用导数求出最大值即可.

解答 解:(1)$f'(x)=\frac{1}{x}-\frac{m}{x^2}+3=\frac{{3{x^2}+x-m}}{x^2}$,
∵x>0,所以①当-m≥0,即m≤0时,f'(x)>0在(0,+∞)上恒成立,∴f(x)在(0,+∞)上单调递增.
②当m>0时,由f'(x)=0,得${x_1}=\frac{{-1-\sqrt{1+12m}}}{6}<0$(不符合题意,舍),
${x_2}=\frac{{-1+\sqrt{1+12m}}}{6}>0$,所以由f'(x)>0得$x>\frac{{-1+\sqrt{1+12m}}}{6}$,由f'(x)<0得$0<x<\frac{{-1+\sqrt{1+12m}}}{6}$,
∴f(x)在(0,$\frac{-1+\sqrt{1+12m}}{6}$)上单调递减,在$({\frac{{-1+\sqrt{1+12m}}}{6},+∞})$上单调递增.
综上所述,当m≤0时,f(x)的递增区间为(0,+∞),无递减区间;
当m>0时,f(x)的递增区间为 $({\frac{{-1+\sqrt{1+12m}}}{6},+∞})$,递减区间为$({0,\frac{{-1+\sqrt{1+12m}}}{6}})$.
(2)对?m∈[0,2],f(x)≤(k+1)x,即$lnx+\frac{m}{x}+3x≤({k+1})x$,
又x>0,∴m≤(k+1)x2-3x2-xlnx恒成立,∴(k+1)x2-3x2-xlnx≥2,∴$k≥\frac{2}{x^2}+\frac{lnx}{x}+2$.
令$g(x)=\frac{lnx}{x}+\frac{2}{x^2}+2$,则$g'(x)=\frac{1-lnx}{x^2}-\frac{4}{x^2}=\frac{x-lnx-4}{x^3}$,
又x∈[1,e]时,xlnx≥0,x<4,∴x-xlnx-4<0,
∴g'(x)<0,∴g(x)在[1,e]上是减函数,
∴k≥g(1)=4,即k∈[4,+∞).

点评 本题主要考查了利用函数的导数求出函数的单调性以及函数的极值问题,考查了转化思想,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.某投资公司现提供两种一年期投资理财方案,一年后投资盈亏的情况如表:
投资股市获利40%不赔不赚亏损20%购买基金获利20%不赔不赚亏损10%
概率P$\frac{1}{2}$$\frac{1}{8}$$\frac{3}{8}$概率Pp$\frac{1}{3}$q
( I)甲、乙两人在投资顾问的建议下分别选择“投资股市”和“购买基金”,若一年后他们中至少有一人盈利的概率大于$\frac{4}{5}$,求p的取值范围;
( II)某人现有10万元资金,决定在“投资股市”和“购买基金”这两种方案中选出一种,若购买基金现阶段分析出$p=\frac{1}{2}$,那么选择何种方案可使得一年后的投资收益的数学期望值较大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.圆ρ=4cosθ的圆心到直线tanθ=1的距离为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.2D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=t+1\\ y=t+4\end{array}$(t为参数),在以原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=$\frac{{\sqrt{3}}}{{\sqrt{1+2{{cos}^2}θ}}}$.
(1)写出直线l一般式方程与曲线C的直角坐标的标准方程;
(2)设曲线C上的点到直线l的距离为d,求d的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.一个总体中有600个个体,随机编号为001,002,…,600,利用系统抽样方法抽取容量为24的一个样本,总体分组后在第一组随机抽得的编号为006,则在编号为051~125之间抽得的编号为(  )
A.056,080,104B.054,078,102C.054,079,104D.056,081,106

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=1-2sin2x在点$({\frac{π}{4},f({\frac{π}{4}})})$处的切线为l,则直线l、曲线f(x)以及直线$x=\frac{π}{2}$所围成的区域的面积为$\frac{π^2}{16}-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系xoy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$(α为参数),曲线C2的参数方程为$\left\{\begin{array}{l}{x=cosβ}\\{y=1+sinβ}\end{array}\right.$(β为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求曲线C1和曲线C2的极坐标方程;
(2)已知射线l1:θ=α($\frac{π}{6}$<α<$\frac{π}{2}$),将射线l1顺时针方向旋转$\frac{π}{6}$得到l2:θ=α-$\frac{π}{6}$,且射线l1与曲线C1交于两点,射线l2与曲线C2交于O,Q两点,求|OP|•|OQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.执行如图所示的程序框图,若输入n=5,则输出的S值为(  )
A.$\frac{1}{20}$B.$\frac{5}{16}$C.$\frac{16}{5}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,a,b,c分别是角A,B,C的对边,b=$\sqrt{2}$sinB,且满足tanA+tanC=$\frac{2sinB}{cosA}$.
(Ⅰ)求角C和边c的大小;
(Ⅱ)求△ABC面积的最大值.

查看答案和解析>>

同步练习册答案