精英家教网 > 高中数学 > 题目详情
11.在△ABC中,a,b,c分别是角A,B,C的对边,b=$\sqrt{2}$sinB,且满足tanA+tanC=$\frac{2sinB}{cosA}$.
(Ⅰ)求角C和边c的大小;
(Ⅱ)求△ABC面积的最大值.

分析 (Ⅰ)根据同角的三角函数的关系以及诱导公式和两角和的正弦公式即可求出,再根据正弦定理即可求出c的值,
(Ⅱ)根据余弦定理和基本不等式即可求出最大值.

解答 解:(Ⅰ)tanA+tanC=$\frac{2sinB}{cosA}$可得$\frac{sinA}{cosA}$+$\frac{sinC}{cosC}$=$\frac{sinAcosC+cosAsinC}{cosAcosC}$
=$\frac{sin(A+C)}{cosAcosC}$=$\frac{sinB}{cosAcosC}$=$\frac{2sinB}{cosA}$,
∴cosC=$\frac{1}{2}$,
∵0<C<π,
∴C=$\frac{π}{3}$,
∵b=$\sqrt{2}$sinB,
由正弦定理可得$\frac{c}{sinC}$=$\frac{b}{sinB}$=$\sqrt{2}$,
∴c=$\frac{\sqrt{6}}{2}$;
(Ⅱ)由余弦定理可得c2=a2+b2-2abcosC,
∴$\frac{3}{2}$=a2+b2-ab≥2ab-ab=ab,当且仅当a=b时取等号.
∴S△ABC=$\frac{1}{2}$absinC=$\frac{\sqrt{3}}{4}$ab≤$\frac{\sqrt{3}}{4}$×$\frac{3}{2}$=$\frac{3\sqrt{3}}{8}$,
故△ABC面积的最大值为$\frac{3\sqrt{3}}{8}$..

点评 本题考查了正弦定理和余弦定理以及三角函数的恒等变换,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=lnx+\frac{m}{x}+3x$.
(1)求函数f(x)的单调区间;
(2)若对任意的m∈[0,2],不等式f(x)≤(k+1)x,对x∈[1,e]恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=ex+sinx(e为自然对数的底数),g(x)=ax,F(x)=f(x)-g(x).
(1)若x=0是F(x)的极值点,且直线x=t(t≥0)分别与函数f(x)和g(x)的图象交于P,Q,求P,Q两点间的最短距离;
(2)若x≥0时,函数y=F(x)的图象恒在y=F(-x)的图象上方,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某几何体的三视图如图所示,则该几何体中最长的棱长为(  )
A.$3\sqrt{3}$B.$2\sqrt{6}$C.$\sqrt{21}$D.$2\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}x=1+cost\\ y=sint\end{array}\right.$(为参数),以坐标原点O为极点,以轴正半轴为极轴,建立极坐标系.
(1)求圆C的极坐标方程;
(2)直线的极坐标方程是$2ρsin(α+\frac{π}{4})=2\sqrt{2}$,曲线C1的极坐标方程为θ=α0,其中α0满足tanα0=2,曲线C1与圆C的交点为O,P,与直线的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某测试团队为了研究“饮酒”对“驾车安全”的影响,随机选取100名驾驶员先后在无酒状态、酒后状态下进行“停车距离”测试.测试的方案:电脑模拟驾驶,以某速度匀速行驶,记录下驾驶员的“停车距离”(驾驶员从看到意外情况到车子完全停下所需要的距离).无酒状态与酒后状态下的试验数据分别列于表1和表2.
表1
停车距离d(米)(10,20](20,30](30,40](40,50](50,60]
频数26ab82
表2
平均每毫升血液酒精含量x毫克1030507090
平均停车距离y米3050607090
已知表1数据的中位数估计值为26,回答以下问题.
(Ⅰ)求a,b的值,并估计驾驶员无酒状态下停车距离的平均数;
(Ⅱ)根据最小二乘法,由表2的数据计算y关于x的回归方程$\hat y=\hat bx+\hat a$;
(Ⅲ)该测试团队认为:驾驶员酒后驾车的平均“停车距离”y大于(Ⅰ)中无酒状态下的停车距离平均数的3倍,则认定驾驶员是“醉驾”.请根据(Ⅱ)中的回归方程,预测当每毫升血液酒精含量大于多少毫克时为“醉驾”?
(附:对于一组数据(x1,y1),(x2,y2),…,(xn,yn),其回归直线$\hat y=\hat bx+\hat a$的斜率和截距的最小二乘估计分别为$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\bar x\bar y}}{{\sum_{i=1}^n{x_i^2}-n{{\bar x}^2}}}$,$\hat a=\bar y-\hat b\bar x$.)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在直角梯形ABCD中,AB⊥AD,AD∥BC,AB=BC=2AD=2,E,F分别为BC,CD的中点,以A为圆心,AD为半径的圆交AB于G,点P在$\widehat{DG}$上运动(如图).若$\overrightarrow{AP}$=λ$\overrightarrow{AE}$+μ$\overrightarrow{BF}$,其中λ,μ∈R,则6λ+μ的取值范围是(  )
A.[1,$\sqrt{2}$]B.[$\sqrt{2}$,2$\sqrt{2}$]C.[2,2$\sqrt{2}$]D.[1,2$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f'(x)是函数f(x)的导函数,$f(1)=\frac{1}{e}$,对任意实数都有f(x)-f'(x)>0,则不等式f(x)<ex-2的解集为(  )
A.(-∞,e)B.(1,+∞)C.(1,e)D.(e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.正方体棱长为2,则其外接球的表面积为12π.

查看答案和解析>>

同步练习册答案