精英家教网 > 高中数学 > 题目详情
19.某几何体的三视图如图所示,则该几何体中最长的棱长为(  )
A.$3\sqrt{3}$B.$2\sqrt{6}$C.$\sqrt{21}$D.$2\sqrt{5}$

分析 如图所示,该几何体为四棱锥P-ABCD.侧面PAB⊥底面ABCD,底面ABCD为矩形,过点P作PE⊥AB,垂足为点E,AE=1,BE=2,AD=2,PE=4.

解答 解:如图所示,该几何体为四棱锥P-ABCD.
侧面PAB⊥底面ABCD,底面ABCD为矩形,过点P作PE⊥AB,垂足为点E,AE=1,BE=2,AD=2,PE=4.
该几何体中最长的棱长为PC=$\sqrt{{4}^{2}+{2}^{2}+{2}^{2}}$=2$\sqrt{6}$.
故选:B.

点评 本题考查了长方体与四棱锥的三视图、勾股定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=t+1\\ y=t+4\end{array}$(t为参数),在以原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=$\frac{{\sqrt{3}}}{{\sqrt{1+2{{cos}^2}θ}}}$.
(1)写出直线l一般式方程与曲线C的直角坐标的标准方程;
(2)设曲线C上的点到直线l的距离为d,求d的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.执行如图所示的程序框图,若输入n=5,则输出的S值为(  )
A.$\frac{1}{20}$B.$\frac{5}{16}$C.$\frac{16}{5}$D.$\frac{3}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知两点A(-m,0)和B(2+m,0)(m>0),若在直线l:x+$\sqrt{3}$y-9=0上存在点P,使得PA⊥PB,则实数m的取值范围是(  )
A.(0,3)B.(0,4)C.[3,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在极坐标系中,曲线C:sinθ=|cosθ|上不同的两点M,N到直线l:ρcosθ-2ρsinθ=2的距离为$\sqrt{5}$,则|MN|=(  )
A.$2\sqrt{5}$B.$4\sqrt{5}$C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知抛物线C顶点在原点,焦点在y轴上,抛物线C上一点Q(a,2)到焦点的距离为3,线段AB的两端点A(x1,y1)、B(x2,y2)在抛物线C上.
(1)求抛物线C的方程;
(2)若y轴上存在一点M(0,m)(m>0),使线段AB经过点M时,以AB为直径的圆经过原点,求m的值;
(3)在抛物线C上存在点D(x3,y3),满足x3<x1<x2,若△ABD是以角A为直角的等腰直角三角形,求△ABD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,a,b,c分别是角A,B,C的对边,b=$\sqrt{2}$sinB,且满足tanA+tanC=$\frac{2sinB}{cosA}$.
(Ⅰ)求角C和边c的大小;
(Ⅱ)求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.甲、乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完$\frac{2}{3}$局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为$\frac{2}{3}$,乙获胜的概率为$\frac{1}{3}$,各局比赛结果相互独立.
(Ⅰ)求甲在4局以内(含 4 局)赢得比赛的概率;
(Ⅱ)记 X 为比赛决出胜负时的总局数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.$\overrightarrow{ab}$表示一个两位数,十位数和个位数分别用a,b表示,记f($\overrightarrow{ab}$)=a+b+3ab,如f($\overrightarrow{12}$)=1+2+3×1×2=9,则满足f($\overrightarrow{ab}$)=$\overrightarrow{ab}$的两位数的个数为(  )
A.15B.13C.9D.7

查看答案和解析>>

同步练习册答案