精英家教网 > 高中数学 > 题目详情
7.已知两点A(-m,0)和B(2+m,0)(m>0),若在直线l:x+$\sqrt{3}$y-9=0上存在点P,使得PA⊥PB,则实数m的取值范围是(  )
A.(0,3)B.(0,4)C.[3,+∞)D.[4,+∞)

分析 以AB为直径的圆的方程为:(x-1)2+y2=(1+m)2.在直线l:x+$\sqrt{3}$y-9=0上存在点P,使得PA⊥PB,则直线l与圆有公共点.利用圆心到直线的距离与半径的关系即可得出.

解答 解:以AB为直径的圆的方程为:(x-1)2+y2=(1+m)2.圆心是(1,0)
在直线l:x+$\sqrt{3}$y-9=0上存在点P,使得PA⊥PB,则直线l与圆有公共点.
∴$\frac{|1-9|}{2}$≤1+m,解得m≥3.
故选:C.

点评 本题考查了直线与圆的位置关系、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.在平面直角坐标系xOy中,已知点P(0,1)在圆C:x2+y2+2mx-2y+m2-4m+1=0内,若存在过点P的直线交圆C于A、B两点,且△PBC的面积是△PAC的面积的2倍,则实数m的取值范围为($\frac{4}{9}$,4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在三棱锥P-ABC中,PA=$\sqrt{2}$,PB=$\sqrt{3}$,PC=2,且PA,PB,PC两两垂直,则此三棱锥外接球的体积是$\frac{9π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知a>0,函数f(x)=ln(x-1)-a(x-2),g(x)=ex+(a2-2)x
(1)求f(x)在区间[2,3]上的最小值;
(2)设h(x)=af(x+2)+g(x),当x≥0时,h(x)≥-1恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=ex+sinx(e为自然对数的底数),g(x)=ax,F(x)=f(x)-g(x).
(1)若x=0是F(x)的极值点,且直线x=t(t≥0)分别与函数f(x)和g(x)的图象交于P,Q,求P,Q两点间的最短距离;
(2)若x≥0时,函数y=F(x)的图象恒在y=F(-x)的图象上方,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.直线$\left\{\begin{array}{l}x=tcosα\\ y=tsinα\end{array}\right.(t$为参数)与圆$\left\{\begin{array}{l}x=4+2cosφ\\ y=2sinφ\end{array}\right.(φ$为参数)相切,则此直线的倾斜角$α({α>\frac{π}{2}})$等于(  )
A.$\frac{5π}{6}$B.$\frac{3π}{4}$C.$\frac{2π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某几何体的三视图如图所示,则该几何体中最长的棱长为(  )
A.$3\sqrt{3}$B.$2\sqrt{6}$C.$\sqrt{21}$D.$2\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某测试团队为了研究“饮酒”对“驾车安全”的影响,随机选取100名驾驶员先后在无酒状态、酒后状态下进行“停车距离”测试.测试的方案:电脑模拟驾驶,以某速度匀速行驶,记录下驾驶员的“停车距离”(驾驶员从看到意外情况到车子完全停下所需要的距离).无酒状态与酒后状态下的试验数据分别列于表1和表2.
表1
停车距离d(米)(10,20](20,30](30,40](40,50](50,60]
频数26ab82
表2
平均每毫升血液酒精含量x毫克1030507090
平均停车距离y米3050607090
已知表1数据的中位数估计值为26,回答以下问题.
(Ⅰ)求a,b的值,并估计驾驶员无酒状态下停车距离的平均数;
(Ⅱ)根据最小二乘法,由表2的数据计算y关于x的回归方程$\hat y=\hat bx+\hat a$;
(Ⅲ)该测试团队认为:驾驶员酒后驾车的平均“停车距离”y大于(Ⅰ)中无酒状态下的停车距离平均数的3倍,则认定驾驶员是“醉驾”.请根据(Ⅱ)中的回归方程,预测当每毫升血液酒精含量大于多少毫克时为“醉驾”?
(附:对于一组数据(x1,y1),(x2,y2),…,(xn,yn),其回归直线$\hat y=\hat bx+\hat a$的斜率和截距的最小二乘估计分别为$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\bar x\bar y}}{{\sum_{i=1}^n{x_i^2}-n{{\bar x}^2}}}$,$\hat a=\bar y-\hat b\bar x$.)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)求f(x)=tan(3x-$\frac{π}{4}$)的定义域;
(2)求函数y=lg(sinx)+$\sqrt{cosx-\frac{1}{2}}$的定义域;
(3)函数f(x)=Asin(ωx+φ)(A,ω,φ为常数,A>0,ω>0)的部分图象如图所示,求f(0)

查看答案和解析>>

同步练习册答案