精英家教网 > 高中数学 > 题目详情
5.(1)求f(x)=tan(3x-$\frac{π}{4}$)的定义域;
(2)求函数y=lg(sinx)+$\sqrt{cosx-\frac{1}{2}}$的定义域;
(3)函数f(x)=Asin(ωx+φ)(A,ω,φ为常数,A>0,ω>0)的部分图象如图所示,求f(0)

分析 (1)令3x-$\frac{π}{4}$≠$\frac{π}{2}$+kπ解出;
(2)令$\left\{\begin{array}{l}{sinx>0}\\{cosx-\frac{1}{2}≥0}\end{array}\right.$解出;
(3)利用图象依次求出A,ω,φ,再计算f(0).

解答 解:(1)由3x-$\frac{π}{4}$≠$\frac{π}{2}$+kπ得x≠$\frac{π}{4}$+$\frac{kπ}{3}$,
∴f(x)=tan(3x-$\frac{π}{4}$)的定义域为{x|x≠$\frac{π}{4}$+$\frac{kπ}{3}$,k∈Z}.
(2)由sinx>0得2kπ<x<2kπ+π,
由cosx$-\frac{1}{2}$≥0得cosx$≥\frac{1}{2}$,∴-$\frac{π}{3}$+2kπ≤x≤$\frac{π}{3}$+2kπ,
(2kπ,2kπ+π)∩[-$\frac{π}{3}$+2kπ,$\frac{π}{3}$+2kπ]=(2kπ,$\frac{π}{3}$+2kπ].
∴求函数y=lg(sinx)+$\sqrt{cosx-\frac{1}{2}}$的定义域为{x|2kπ<x≤$\frac{π}{3}$+2kπ,k∈Z}.
(3)由f(x)得图象可知-A=-$\sqrt{2}$,即A=$\sqrt{2}$,
由图象可知f(x)的周期T=4($\frac{7π}{12}-$$\frac{π}{3}$)=π,即$\frac{2π}{ω}$=π,∴ω=2.
又f($\frac{7π}{12}$)=$\sqrt{2}$sin($\frac{7π}{6}$+φ)=-$\sqrt{2}$,∴sin($\frac{7π}{6}$+φ)=-1,
∴$\frac{7π}{6}$+φ=-$\frac{π}{2}$+2kπ,解得φ=-$\frac{5π}{3}$+2kπ,
∴f(0)=$\sqrt{2}$sinφ=$\sqrt{2}$sin(-$\frac{5π}{3}$)=-$\frac{\sqrt{6}}{2}$.

点评 本题考查了三角函数的图象与性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知两点A(-m,0)和B(2+m,0)(m>0),若在直线l:x+$\sqrt{3}$y-9=0上存在点P,使得PA⊥PB,则实数m的取值范围是(  )
A.(0,3)B.(0,4)C.[3,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.甲、乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完$\frac{2}{3}$局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为$\frac{2}{3}$,乙获胜的概率为$\frac{1}{3}$,各局比赛结果相互独立.
(Ⅰ)求甲在4局以内(含 4 局)赢得比赛的概率;
(Ⅱ)记 X 为比赛决出胜负时的总局数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=x-$\frac{1}{x}$,g(x)=lnx.
(Ⅰ)求函数y=2f(x)-5g(x)的单调区间;
(Ⅱ)记过函数y=f(x)-mg(x)两个极值点A,B的直线的斜率为h(m),问函数y=h(m)+2m-2是否存在零点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)满足:①x∈R;②当x1<x2时,f(x1)≤f(x2).
(1)若f(x)=ax3+1,求a的范围;
(2)若f(x)是周期函数,求证:f(x)是常值函数;
(3)若g(x)是x∈R上的周期函数,且g(x)>0,且g(x)最大值为M,h(x)=g(x)•f(x),求证:h(x)是周期函数的充要条件是f(x)是常值函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数y=1+3x-x3有(  )
A.极小值-1,极大值1B.极小值-1,极大值3
C.极小值-2,极大值2D.极小值2,极大值3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.$\overrightarrow{ab}$表示一个两位数,十位数和个位数分别用a,b表示,记f($\overrightarrow{ab}$)=a+b+3ab,如f($\overrightarrow{12}$)=1+2+3×1×2=9,则满足f($\overrightarrow{ab}$)=$\overrightarrow{ab}$的两位数的个数为(  )
A.15B.13C.9D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列表述正确的是(  )
①归纳推理是由特殊到一般的推理;
②演绎推理是由一般到特殊的推理;
③类比推理是由特殊到一般的推理;
④分析法是一种间接证明法.
A.①②③④B.②③④C.①②④D.①②

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.观察下列各式:55=3 125,56=15 625,57=78 125,…,则52017的末四位数字为(  )
A.3 125B.5 625C.8 125D.0 625

查看答案和解析>>

同步练习册答案