精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)满足:①x∈R;②当x1<x2时,f(x1)≤f(x2).
(1)若f(x)=ax3+1,求a的范围;
(2)若f(x)是周期函数,求证:f(x)是常值函数;
(3)若g(x)是x∈R上的周期函数,且g(x)>0,且g(x)最大值为M,h(x)=g(x)•f(x),求证:h(x)是周期函数的充要条件是f(x)是常值函数.

分析 (1)直接由f(x1)-f(x2)≤0求得a的取值范围;
(2)若f(x)是周期函数,记其周期为Tk,任取x0∈R,则有f(x0)=f(x0+Tk),证明对任意x∈[x0,x0+Tk],f(x0)≤f(x)≤f(x0+Tk),可得f(x0)=f(x0+nTk),n∈Z,再由…∪[x0-3Tk,x0-2Tk]∪[x0-2Tk,x0-Tk]∪[x0-Tk,x0]∪[x0,x0+Tk]∪[x0+Tk,x0+2Tk]∪…=R,可得对任意x∈R,f(x)=f(x0)=C,为常数;
(3)分充分性及必要性证明.类似(2)证明充分性;必要性先证明f(x)符号不变,然后分类证明.

解答 (1)解:由f(x1)≤f(x2),得f(x1)-f(x2)=$a({{x}_{1}}^{3}-{{x}_{2}}^{3})≤0$,
∵x1<x2,∴${{x}_{1}}^{3}-{{x}_{2}}^{3}$<0,得a≥0.
故a的范围是[0,+∞);
(2)证明:若f(x)是周期函数,记其周期为Tk,任取x0∈R,则有
f(x0)=f(x0+Tk),
由题意,对任意x∈[x0,x0+Tk],f(x0)≤f(x)≤f(x0+Tk),
∴f(x0)=f(x)=f(x0+Tk).
又∵f(x0)=f(x0+nTk),n∈Z,并且
…∪[x0-3Tk,x0-2Tk]∪[x0-2Tk,x0-Tk]∪[x0-Tk,x0]∪[x0,x0+Tk]∪[x0+Tk,x0+2Tk]∪…=R,
∴对任意x∈R,f(x)=f(x0)=C,为常数;
(3)证明:充分性:若f(x)是常值函数,记f(x)=c1,设g(x)的一个周期为Tg,则
h(x)=c1•g(x),则对任意x0∈R,
h(x0+Tg)=c1•g(x0+Tg)=c1•g(x0)=h(x0),
故h(x)是周期函数;
必要性:若h(x)是周期函数,记其一个周期为Th,首先证明f(x)符号不变.
①设集合A={x|g(x)=m},若存在x0∈R,使得f(x0)=0,则
h(x0)=0,且对任意k∈Z,有h(x0+kTh)=0,
∵g(x)>0,∴f(x0+kTh)=0,即对任意x∈[x0+kTh,x0+(k+1)Th],k∈Z,f(x)=0恒成立,
∴f(x)=0是常值函数;
②若存在x1,x2,使得f(x1)>0,且f(x2)<0,则由题意可知,
x1>x2,那么必然存在正整数N1,使得x2+N1Tk>x1
∴f(x2+N1Tk)>f(x1)>0,且h(x2+N1Tk)=h(x2).
又h(x2)=g(x2)f(x2)<0,而
h(x2+N1Tk)=g(x2+N1Tk)f(x2+N1Tk)>0≠h(x2),矛盾.
综上,f(x)=0或f(x)>0或f(x)<0恒成立.
1°、若f(x)>0恒成立,
任取x0∈A,则必存在N2∈N,使得x0-N2Th≤x0-Tg
即[x0-Tg,x0]⊆[x0-N2Th,x0],
∵…∪[x0-3Tk,x0-2Tk]∪[x0-2Tk,x0-Tk]∪[x0-Tk,x0]∪[x0,x0+Tk]∪[x0+Tk,x0+2Tk]∪…=R,
∴…∪[x0-2N2Th,x0-N2Th]∪[x0-N2Th,x0]∪[x0,x0+N2Th]∪[x0+N2Th,x0+2N2Th]∪…=R.
h(x0)=g(x0)•f(x0)=h(x0-N2Th)=g(x0-N2Th)•f(x0-N2Th),
∵g(x0)=M≥g(x0-N2Th)>0,f(x0)≥f(x0-N2Th)>0.
因此若h(x0)=h(x0-N2Th),必有g(x0)=M=g(x0-N2Th),且f(x0)=f(x0-N2Th)=c.
而由(2)证明可知,对任意x∈R,f(x)=f(x0)=C,为常数.
2°、若f(x)<0恒成立,
任取x0∈A,则必存在N3∈N,使得x0+N3Th≥x0+Tg
即[x0,x0+Tg]⊆[x0,x0+N3Tg],
∵…∪[x0-3Tk,x0-2Tk]∪[x0-2Tk,x0-Tk]∪[x0-Tk,x0]∪[x0,x0+Tk]∪[x0+Tk,x0+2Tk]∪…=R,
∴…∪[x0-2N3Th,x0-N3Th]∪[x0-N3Th,x0]∪[x0,x0+N3Th]∪[x0+N3Th,x0+2N3Th]∪…=R.
h(x0)=g(x0)•f(x0)=h(x0+N3Th)=g(x0+N3Th)•f(x0+N3Th).
∵g(x0)=M≥g(x0+N3Th)>0,f(x0)≤f(x0+N3Th)<0.
因此若h(x0)=h(x0+N3Th),
必有g(x0)=M=g(x0+N3Th),且f(x0)=f(x0+N3Th)=c,
而由(2)证明可知,对任意x∈R,f(x)=f(x0)=C,为常数.
综上,必要性得证.

点评 本题考查抽象函数及其应用,考查逻辑思维能力与理论运算能力考查分类讨论的数学思想方法,题目设置难度过大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=ex+sinx(e为自然对数的底数),g(x)=ax,F(x)=f(x)-g(x).
(1)若x=0是F(x)的极值点,且直线x=t(t≥0)分别与函数f(x)和g(x)的图象交于P,Q,求P,Q两点间的最短距离;
(2)若x≥0时,函数y=F(x)的图象恒在y=F(-x)的图象上方,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在直角梯形ABCD中,AB⊥AD,AD∥BC,AB=BC=2AD=2,E,F分别为BC,CD的中点,以A为圆心,AD为半径的圆交AB于G,点P在$\widehat{DG}$上运动(如图).若$\overrightarrow{AP}$=λ$\overrightarrow{AE}$+μ$\overrightarrow{BF}$,其中λ,μ∈R,则6λ+μ的取值范围是(  )
A.[1,$\sqrt{2}$]B.[$\sqrt{2}$,2$\sqrt{2}$]C.[2,2$\sqrt{2}$]D.[1,2$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f'(x)是函数f(x)的导函数,$f(1)=\frac{1}{e}$,对任意实数都有f(x)-f'(x)>0,则不等式f(x)<ex-2的解集为(  )
A.(-∞,e)B.(1,+∞)C.(1,e)D.(e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某校高三有800名学生,第二次模拟考试数学考试成绩X~N(110,σ2)(试卷满分为150分),其中90~130分之间的人数约占75%,则成绩不低于130分的人数约为100.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)求f(x)=tan(3x-$\frac{π}{4}$)的定义域;
(2)求函数y=lg(sinx)+$\sqrt{cosx-\frac{1}{2}}$的定义域;
(3)函数f(x)=Asin(ωx+φ)(A,ω,φ为常数,A>0,ω>0)的部分图象如图所示,求f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ln(x+1)+ax2,其中a∈R
(Ⅰ)若函数f(x)在x=1处的切线与直线x+y-1=0垂直,求a的值;
(Ⅱ)讨论函数f(x)极值点的个数,并说明理由;
(Ⅲ)若?x>0,f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.正方体棱长为2,则其外接球的表面积为12π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知正四棱锥的体积是48cm3,高为4cm,则该四棱锥的侧面积是60cm2

查看答案和解析>>

同步练习册答案