精英家教网 > 高中数学 > 题目详情
10.已知正四棱锥的体积是48cm3,高为4cm,则该四棱锥的侧面积是60cm2

分析 根据体积公式计算底面边长,再利用勾股定理计算斜高,最后再计算侧面积.

解答 解:设正四锥的底面边长为a,则V=$\frac{1}{3}$×a2×4=48,解得a=6,
∴四棱锥的斜高为$\sqrt{{3}^{2}+{4}^{2}}$=5,
∴四棱锥的侧面积S=$\frac{1}{2}×6×5×4$=60.
故答案为:60.

点评 本题考查了棱锥的结构特征,棱锥的侧面积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)满足:①x∈R;②当x1<x2时,f(x1)≤f(x2).
(1)若f(x)=ax3+1,求a的范围;
(2)若f(x)是周期函数,求证:f(x)是常值函数;
(3)若g(x)是x∈R上的周期函数,且g(x)>0,且g(x)最大值为M,h(x)=g(x)•f(x),求证:h(x)是周期函数的充要条件是f(x)是常值函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知棱长为2,各面均为等边三角形的四面体S-ABC的各顶点都在球O的球面上,则球O的表面积为(  )
A.πB.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,已知点D为三角形ABC边BC上一点,$\overrightarrow{BD}$=3$\overrightarrow{DC}$,En(n∈N*)为AC边上的一列点,满足$\overrightarrow{{E}_{n}A}$=$\frac{1}{4}$an+1$\overrightarrow{{E}_{n}B}$-(3an+2)$\overrightarrow{{E}_{n}D}$,其中实数列{an}中,an>0,a1=1,则{an}的通项公式为(  )
A.3•2n-1-1B.2n-1C.3n-2D.2•3n-1-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知A,B,C,D是同一球面上的四个点,其中△ABC是正三角形,AD⊥平面ABC,AD=2AB=6则该球的表面积为32$\sqrt{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.观察下列各式:55=3 125,56=15 625,57=78 125,…,则52017的末四位数字为(  )
A.3 125B.5 625C.8 125D.0 625

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,正四棱柱ABCD-A1B1C1D1中,O是BD的中点,E是棱CC1上任意一点.
(1)证明:BD⊥A1E;
(2)如果AB=2,$CE=\sqrt{2}$,OE⊥A1E,求AA1的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知定点A(a,0)和定直线x=b(0<a<b),动点P,Q分别在y轴和直线x=b上移动,且满足AP⊥AQ,侧△APQ的面积取得最小值时的点P的坐标为(0,a).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=|x+1|-a|x-1|,若f(x)≤a|x+3|,则a的最小值$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案