| A. | π | B. | 2π | C. | 4π | D. | 6π |
分析 把四面体补成正方体,两者的外接球是同一个,求出正方体的棱长,然后求出正方体的对角线长,就是球的直径,即可得到答案.
解答
解:如图,将四面体补成正方体,则正方体的棱长是$\sqrt{2}$,正方体的对角线长为:$\sqrt{6}$,棱长都为2的四面体的四个顶点在同一球面上,则正方体的八个顶点也在同一球面上,正方体的对角线就是球的直径.
则球的半径R=$\frac{\sqrt{6}}{2}$∴球的表面积为4π×$(\frac{\sqrt{6}}{2})^{2}$=6π,
故选:D.
点评 本题考查球的体积,考查空间想象能力,正四面体的外接球转化为正方体外接球,使得问题的难度得到降低,问题得到解决,注意正方体的对角线就是球的直径,也是比较重要的.
科目:高中数学 来源: 题型:选择题
| A. | [1,$\sqrt{2}$] | B. | [$\sqrt{2}$,2$\sqrt{2}$] | C. | [2,2$\sqrt{2}$] | D. | [1,2$\sqrt{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{32π}{3}$ | B. | 4π | C. | 2π | D. | $\frac{4π}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com