精英家教网 > 高中数学 > 题目详情
13.球面上有不同的三点A、B、C,且AB=BC=AC=3,球心到A,B,C所在截面的距离为球半径的一半,则球的表面积为16π.

分析 先确定ABC外接圆的半径,再求出球的半径,即可求得球的表面积.

解答 解:设球心为O,△ABC外接圆的圆心为O′,设球的半径为2r,则OO′=r,∴O′A=$\sqrt{3}$r
∵AB=BC=CA=3,∴O′A=$\frac{2}{3}$×$\frac{\sqrt{3}}{2}$×3=$\sqrt{3}$,
∴$\sqrt{3}$r=$\sqrt{3}$
∴r=1
∴球的表面积4π•22=16π.
故答案为:16π.

点评 本题主要考查球的表面积,涉及到截面圆圆心与球心的连线垂直于截面,这是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=lnx+a(x2-3x+2),其中a为参数.
(1)当a=0时,求函数f(x)在x=1处的切线方程;
(2)讨论函数f(x)极值点的个数,并说明理由;
(3)若对任意x∈[1,+∞),f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.圆柱的轴截面是正方形,且面积为4,则圆柱的侧面积为4π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知棱长为2,各面均为等边三角形的四面体S-ABC的各顶点都在球O的球面上,则球O的表面积为(  )
A.πB.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x2,g(x)=x-1.
(1)若存在x∈R,使f(x)<b•g(x),求实数b的取值范围;
(2)设F(x)=f(x)-mg(x)+1-m,若F(x)≥0在区间[2,5]上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,已知点D为三角形ABC边BC上一点,$\overrightarrow{BD}$=3$\overrightarrow{DC}$,En(n∈N*)为AC边上的一列点,满足$\overrightarrow{{E}_{n}A}$=$\frac{1}{4}$an+1$\overrightarrow{{E}_{n}B}$-(3an+2)$\overrightarrow{{E}_{n}D}$,其中实数列{an}中,an>0,a1=1,则{an}的通项公式为(  )
A.3•2n-1-1B.2n-1C.3n-2D.2•3n-1-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知A,B,C,D是同一球面上的四个点,其中△ABC是正三角形,AD⊥平面ABC,AD=2AB=6则该球的表面积为32$\sqrt{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,正四棱柱ABCD-A1B1C1D1中,O是BD的中点,E是棱CC1上任意一点.
(1)证明:BD⊥A1E;
(2)如果AB=2,$CE=\sqrt{2}$,OE⊥A1E,求AA1的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.参数方程为$\left\{{\begin{array}{l}{x=-3+2cosθ}\\{y=4+2sinθ}\end{array}}\right.(θ为参数)$,表示的曲线是(  )
A.B.椭圆C.双曲线D.直线

查看答案和解析>>

同步练习册答案