精英家教网 > 高中数学 > 题目详情
4.圆柱的轴截面是正方形,且面积为4,则圆柱的侧面积为4π.

分析 根据圆柱的结构特征可知底面半径和高,代入侧面积公式计算即可.

解答 解:∵圆柱的轴截面是正方形,且面积为4,
∴圆柱的底面半径r=1,高h=2,
∴圆柱的侧面积S=2πrh=2π×1×2=4π.
故答案为:4π.

点评 本题考查了圆柱的结构特征和侧面积计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在直角坐标系xOy中,圆C的参数方程为$\left\{\begin{array}{l}x=1+cost\\ y=sint\end{array}\right.$(为参数),以坐标原点O为极点,以轴正半轴为极轴,建立极坐标系.
(1)求圆C的极坐标方程;
(2)直线的极坐标方程是$2ρsin(α+\frac{π}{4})=2\sqrt{2}$,曲线C1的极坐标方程为θ=α0,其中α0满足tanα0=2,曲线C1与圆C的交点为O,P,与直线的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某校高三有800名学生,第二次模拟考试数学考试成绩X~N(110,σ2)(试卷满分为150分),其中90~130分之间的人数约占75%,则成绩不低于130分的人数约为100.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ln(x+1)+ax2,其中a∈R
(Ⅰ)若函数f(x)在x=1处的切线与直线x+y-1=0垂直,求a的值;
(Ⅱ)讨论函数f(x)极值点的个数,并说明理由;
(Ⅲ)若?x>0,f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在正方体ABCD-A1B1C1D1中,点M、N分别是直线CD、AB上的动点,点P是△A1C1D内的动点(不包括边界),记直线D1P与MN所成角为θ,若θ的最小值为$\frac{π}{3}$,则点P的轨迹是(  )
A.圆的一部分B.椭圆的一部分C.抛物线的一部分D.双曲线的一部分

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.正方体棱长为2,则其外接球的表面积为12π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,在三棱锥D-ABC中,$AC=BC=1,CD=AB=\sqrt{2},AD=BD=\sqrt{3}$,若该三棱锥的四个顶点均在同一球面上,则该球的体积为(  )
A.$\frac{32π}{3}$B.C.D.$\frac{4π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.球面上有不同的三点A、B、C,且AB=BC=AC=3,球心到A,B,C所在截面的距离为球半径的一半,则球的表面积为16π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.共享单车问题:每月供应量an=$\left\{\begin{array}{l}{5{n}^{4}+15,n∈[1,3]}\\{-10n+470,n∈[4,+∞)}\end{array}\right.$,n∈N*,每月损失量bn=n+5(n∈N*),保有量Q为an的累计量减去bn的累计和.
(1)求第4月的保有量;
(2)Sn=-(n-46)2+8800,记Sn为自行车停放点容纳车辆,当Q取最大值时,停放点是否能容纳?

查看答案和解析>>

同步练习册答案