14£®¹²Ïíµ¥³µÎÊÌ⣺ÿÔ¹©Ó¦Á¿an=$\left\{\begin{array}{l}{5{n}^{4}+15£¬n¡Ê[1£¬3]}\\{-10n+470£¬n¡Ê[4£¬+¡Þ£©}\end{array}\right.$£¬n¡ÊN*£¬Ã¿ÔÂËðʧÁ¿bn=n+5£¨n¡ÊN*£©£¬±£ÓÐÁ¿QΪanµÄÀÛ¼ÆÁ¿¼õÈ¥bnµÄÀۼƺͣ®
£¨1£©ÇóµÚ4Ôµı£ÓÐÁ¿£»
£¨2£©Sn=-£¨n-46£©2+8800£¬¼ÇSnΪ×ÔÐгµÍ£·ÅµãÈÝÄɳµÁ¾£¬µ±QÈ¡×î´óֵʱ£¬Í£·ÅµãÊÇ·ñÄÜÈÝÄÉ£¿

·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉµÃµÚ4Ôµı£ÓÐÁ¿ÎªQ=£¨a1-b1£©+£¨a2-b2£©+£¨a3-b3£©+£¨a4-b4£©£¬´úÈë¼ÆËã¼´¿ÉµÃµ½ËùÇóÖµ£»
£¨2£©¼ÆËãµ±n¡Ý4ʱ£¬Q=935+£¨-10¡Á5+470£©-£¨5+5£©+¡­+£¨-10n+470£©-£¨n+5£©£¬Ó¦ÓõȲîÊýÁеÄÇóºÍ¹«Ê½£¬»¯¼òÕûÀí¿ÉµÃQ£¬ÔÙÓɶþ´Îº¯ÊýµÄÐÔÖÊ£¬¿ÉµÃQµÄ×î´óÖµ£¬Çó³ö´Ëʱ×ÔÐгµÍ£·ÅµãÈÝÄɳµÁ¾£¬±È½Ï¼´¿ÉµÃµ½½áÂÛ£®

½â´ð ½â£º£¨1£©an=$\left\{\begin{array}{l}{5{n}^{4}+15£¬n¡Ê[1£¬3]}\\{-10n+470£¬n¡Ê[4£¬+¡Þ£©}\end{array}\right.$£¬n¡ÊN*£¬bn=n+5£¨n¡ÊN*£©£¬
¿ÉµÃµÚ4Ôµı£ÓÐÁ¿ÎªQ=£¨a1-b1£©+£¨a2-b2£©+£¨a3-b3£©+£¨a4-b4£©
=£¨5+15-6£©+£¨5¡Á16+15-7£©+£¨5¡Á81+15-8£©+£¨-40+470-9£©=14+88+412+421=935£»
£¨2£©µ±n¡Ý4ʱ£¬Q=935+£¨-10¡Á5+470£©-£¨5+5£©+¡­+£¨-10n+470£©-£¨n+5£©
=935+£¨-10£©¡Á$\frac{£¨n-4£©£¨n+5£©}{2}$+470£¨n-4£©-$\frac{£¨n-4£©£¨n+5£©}{2}$-5£¨n-4£©
=-$\frac{11}{2}$n2+$\frac{919}{2}$n-815£¬
¿ÉµÃQ=$\left\{\begin{array}{l}{14£¬n=1}\\{102£¬n=2}\\{514£¬n=3}\\{-\frac{11}{2}{n}^{2}+\frac{919}{2}n-815£¬n¡Ý4}\end{array}\right.$£¬n¡ÊN*£¬
n¡Ý4ʱ£¬ÓÉÓÚ¶Ô³ÆÖáΪ-$\frac{919}{2¡Á11}$Óë42¾àÀë×îС£¬
Ôòµ±n=42ʱ£¬QÈ¡µÃ×î´óÖµ8782£®
´Ëʱ£¬S42=-£¨42-46£©2+8800=8784£¾8782£®
Ôòµ±QÈ¡×î´óֵʱ£¬Í£·ÅµãÄÜÈÝÄÉ£®

µãÆÀ ±¾Ì⿼²éº¯ÊýÄ£ÐÍÔÚʵ¼ÊÎÊÌâÖеÄÓ¦Ó㬿¼²é¶þ´Îº¯ÊýµÄ×îÖµÇ󷨣¬×¢ÒânΪ×ÔÈ»Êý£¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Ô²ÖùµÄÖá½ØÃæÊÇÕý·½ÐΣ¬ÇÒÃæ»ýΪ4£¬ÔòÔ²ÖùµÄ²àÃæ»ýΪ4¦Ð£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÒÑÖªA£¬B£¬C£¬DÊÇͬһÇòÃæÉϵÄËĸöµã£¬ÆäÖС÷ABCÊÇÕýÈý½ÇÐΣ¬AD¡ÍÆ½ÃæABC£¬AD=2AB=6Ôò¸ÃÇòµÄ±íÃæ»ýΪ32$\sqrt{3}¦Ð$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èçͼ£¬ÕýËÄÀâÖùABCD-A1B1C1D1ÖУ¬OÊÇBDµÄÖе㣬EÊÇÀâCC1ÉÏÈÎÒâÒ»µã£®
£¨1£©Ö¤Ã÷£ºBD¡ÍA1E£»
£¨2£©Èç¹ûAB=2£¬$CE=\sqrt{2}$£¬OE¡ÍA1E£¬ÇóAA1µÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªº¯Êýf£¨x£©=eax+bx£¨a£¼0£©Ôڵ㣨0£¬f£¨0£©£©´¦µÄÇÐÏß·½³ÌΪy=5x+1£¬ÇÒf£¨1£©+f'£¨1£©=12£®
£¨¢ñ£©Çóº¯Êýy=f£¨x£©µÄ¼«Öµ£»
£¨¢ò£©Èôf£¨x£©£¾x2+3ÔÚx¡Ê[1£¬m]ÉϺã³ÉÁ¢£¬ÇóÕýÕûÊýmµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÒÑÖª¶¨µãA£¨a£¬0£©ºÍ¶¨Ö±Ïßx=b£¨0£¼a£¼b£©£¬¶¯µãP£¬Q·Ö±ðÔÚyÖáºÍÖ±Ïßx=bÉÏÒÆ¶¯£¬ÇÒÂú×ãAP¡ÍAQ£¬²à¡÷APQµÄÃæ»ýÈ¡µÃ×îСֵʱµÄµãPµÄ×ø±êΪ£¨0£¬a£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÔÚÖ±½Ç×ø±êϵxoyÖУ¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ô²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2cos¦È£®
£¨1£©ÇóÔ²CµÄ²ÎÊý·½³Ì£»
£¨2£©ÉèÖ±Ïßy=$\sqrt{3}$x+bÓëÔ²CÏàÇУ¬ÇóbµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=-3+2cos¦È}\\{y=4+2sin¦È}\end{array}}\right.£¨¦ÈΪ²ÎÊý£©$£¬±íʾµÄÇúÏßÊÇ£¨¡¡¡¡£©
A£®Ô²B£®ÍÖÔ²C£®Ë«ÇúÏßD£®Ö±Ïß

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Èçͼ£¬ABCDÊDZ߳¤Îª$2\sqrt{3}$µÄÕý·½ÐΣ¬µãE£¬F·Ö±ðÊDZßBC£¬CDµÄÖе㣬½«¡÷ABE£¬¡÷CEF£¬¡÷ADF·Ö±ðÑØAE£¬EF£¬FAÕÛÆð£¬Ê¹µÃB£¬C£¬DÈýµãÖØºÏÓÚµãP£¬ÈôËÄÃæÌåPAEFµÄËĸö¶¥µãÔÚͬһ¸öÇòµÄÇòÃæÉÏ£¬Ôò¸ÃÇòµÄ±íÃæ»ýÊÇ£¨¡¡¡¡£©
A£®6¦ÐB£®12¦ÐC£®18¦ÐD£®$9\sqrt{2}¦Ð$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸