精英家教网 > 高中数学 > 题目详情
12.在直角坐标系xoy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2cosθ.
(1)求圆C的参数方程;
(2)设直线y=$\sqrt{3}$x+b与圆C相切,求b的值.

分析 (1)由圆C的极坐标方程能求出圆C的普通方程,由此能求出圆C的参数方程.
(2)求出圆心C(1,0),半径r=1,由此求出圆心C(1,0)到直线$y=\sqrt{3}x+b$的距离,利用直线与圆C相切,能求出结果.

解答 解:(1)∵圆C的极坐标方程为ρ=2cosθ.
C的普通方程为(x-1)2+y2=1,
∴C的参数方程为$\left\{\begin{array}{l}{x=1+cosθ}\\{y=sinθ}\end{array}\right.$,(0≤θ<2π).
(2)由(1)知圆心C(1,0),半径r=1;
圆心C(1,0)到直线$y=\sqrt{3}x+b$的距离$d=\frac{{|{\sqrt{3}+b}|}}{2}$,
∵直线与圆C相切,∴$d=\frac{{|{\sqrt{3}+b}|}}{2}$=1,
解得$b=±2-\sqrt{3}$.

点评 本题考查圆的参数方程的求法,考查实数值的求法,考查极坐标方程、直角坐标方程、参数方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.如图,在三棱锥D-ABC中,$AC=BC=1,CD=AB=\sqrt{2},AD=BD=\sqrt{3}$,若该三棱锥的四个顶点均在同一球面上,则该球的体积为(  )
A.$\frac{32π}{3}$B.C.D.$\frac{4π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某单位招聘员工,有200名应聘者参加笔试,随机抽查了其中20名应聘者笔试试卷,统计他们的成绩如下表:
分数段[60,65)[65,70)[70,75)[75,80)[80,85)[85,90)[90,95)
人数1366211
若按笔试成绩择优录取40名参加面试,由此可预测参加面试的分数线为(  )
A.70分B.75分C.80分D.85分

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.共享单车问题:每月供应量an=$\left\{\begin{array}{l}{5{n}^{4}+15,n∈[1,3]}\\{-10n+470,n∈[4,+∞)}\end{array}\right.$,n∈N*,每月损失量bn=n+5(n∈N*),保有量Q为an的累计量减去bn的累计和.
(1)求第4月的保有量;
(2)Sn=-(n-46)2+8800,记Sn为自行车停放点容纳车辆,当Q取最大值时,停放点是否能容纳?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知直线l的参数方程为$\left\{\begin{array}{l}{x=2-\frac{2\sqrt{5}}{5}t}\\{y=1+\frac{\sqrt{5}}{5}t}\end{array}\right.$(t为参数),曲线C:$\frac{{x}^{2}}{4}$+y2=1
(1)求直线l的普通方程和曲线C的参数方程;
(2)若点M在曲线C上运动,试求出M到直线l的距离的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某程序框图如图所示,对应的程序运行后输出的S的值是(  )    
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在极坐标系中,P是曲线C1:ρ=12sinθ上的动点,Q是曲线C2:ρ=12cos(θ-$\frac{π}{6}$)上的动点,
(1)求曲线C1,C2的平面直角坐标方程并说明表示什么曲线;
(2)试求PQ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图给出的是计算$\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+…+\frac{1}{20}$的值的一个程序框图,其中判断框内应填入的条件是(  )
A.i>10B.i<10C.i<20D.i>20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在四边形ABCD中,点E在BC上,∠BAD=$\frac{2π}{3}$,AD:AC:CD=1:2:$\sqrt{3}$.
(1)求∠BAC;
(2)若AB=1,BE=3EC,AE平分∠BAC,求AE.

查看答案和解析>>

同步练习册答案