精英家教网 > 高中数学 > 题目详情
4.在极坐标系中,P是曲线C1:ρ=12sinθ上的动点,Q是曲线C2:ρ=12cos(θ-$\frac{π}{6}$)上的动点,
(1)求曲线C1,C2的平面直角坐标方程并说明表示什么曲线;
(2)试求PQ的最大值.

分析 (1)把已知等式两边同时乘ρ,结合公式ρ2=x2+y2,y=ρsinθ求得C1的直角坐标方程;展开两角差的余弦,把已知等式两边同时乘ρ,结合公式ρ2=x2+y2,x=ρcosx,y=ρsinθ求得C2的直角坐标方程;
(2)画出图形,数形结合得答案.

解答 解:(1)以极点O为原点,极轴为x轴建立直角坐标系xOy.
由ρ=12sinθ,得ρ2=12ρsinθ,得x2+y2=12y,即x2+(y-6)2=36,
∴C1表示圆心为(0,6),半径为6的圆.
由ρ=12cos(θ-$\frac{π}{6}$),得$ρ=12(\frac{\sqrt{3}}{2}cosθ+\frac{1}{2}sinθ)$
=$6\sqrt{3}cosθ+6sinθ$,
∴${ρ}^{2}=6\sqrt{3}ρcosθ+6ρsinθ$,即${x}^{2}+{y}^{2}-6\sqrt{3}x-6y=0$,
则(x-3$\sqrt{3}$)2+(y-3)2=36,
∴C2表示以(3$\sqrt{3}$,3)为圆心,6为半径的圆.
(2)由圆的位置关系可知,当P、Q所在直线为连心线所在直线时,PQ长度可取最大值,且最大值为$\sqrt{(3\sqrt{3})^{2}+{3}^{2}}$+6+6=18.

点评 本题考查简单曲线的极坐标方程,考查两圆的位置关系,体现了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x2,g(x)=x-1.
(1)若存在x∈R,使f(x)<b•g(x),求实数b的取值范围;
(2)设F(x)=f(x)-mg(x)+1-m,若F(x)≥0在区间[2,5]上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=eax+bx(a<0)在点(0,f(0))处的切线方程为y=5x+1,且f(1)+f'(1)=12.
(Ⅰ)求函数y=f(x)的极值;
(Ⅱ)若f(x)>x2+3在x∈[1,m]上恒成立,求正整数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在直角坐标系xoy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2cosθ.
(1)求圆C的参数方程;
(2)设直线y=$\sqrt{3}$x+b与圆C相切,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,角A,B,C所对的边分别为a,b,c,已知$csinA=\sqrt{3}acosC$,则C=$\frac{π}{3}$;若$c=\sqrt{31}$,△ABC的面积为$\frac{{3\sqrt{3}}}{2}$,则a+b=7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.参数方程为$\left\{{\begin{array}{l}{x=-3+2cosθ}\\{y=4+2sinθ}\end{array}}\right.(θ为参数)$,表示的曲线是(  )
A.B.椭圆C.双曲线D.直线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设向量$\overrightarrow{BA}$=(3,2),$\overrightarrow{BC}$=(3,-4),$\overrightarrow{AD}$=(0,2),则(  )
A.$\overrightarrow{AB}∥\overrightarrow{BC}$B.$\overrightarrow{AB}∥\overrightarrow{AD}$C.$\overrightarrow{BC}∥\overrightarrow{AC}$D.$\overrightarrow{AC}∥\overrightarrow{AD}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.执行如图所示的程序框图,若输出的结果是8,则判断框内m的取值范围是(  )
A.(42,56]B.(20,30]C.(30,42]D.(20,42)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,在等腰直角三角形ABC中,∠C是直角,P是三角形内部一点,且∠CAP=∠BCP=∠ABP=α,则tanα的值等于(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{3}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

同步练习册答案