精英家教网 > 高中数学 > 题目详情
19.在△ABC中,角A,B,C所对的边分别为a,b,c,已知$csinA=\sqrt{3}acosC$,则C=$\frac{π}{3}$;若$c=\sqrt{31}$,△ABC的面积为$\frac{{3\sqrt{3}}}{2}$,则a+b=7.

分析 由正弦定理可得$sinCsinA=\sqrt{3}sinAcosC$,从而得到$tanC=\sqrt{3},C=\frac{π}{3}$,由$\frac{1}{2}absinC=\frac{{3\sqrt{3}}}{2}$,得ab=6,由此利用余弦定理能求出a+b.

解答 解:∵在△ABC中,角A,B,C所对的边分别为a,b,c,已知$csinA=\sqrt{3}acosC$,
∴由正弦定理可得$sinCsinA=\sqrt{3}sinAcosC$,
解得$tanC=\sqrt{3},C=\frac{π}{3}$,
∴$\frac{1}{2}absinC=\frac{{3\sqrt{3}}}{2}$,解得ab=6,
∵$c=\sqrt{31}$,cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$,
∴$\frac{1}{2}=\frac{{a}^{2}+\frac{36}{{a}^{2}}-31}{2×6}$,解得a=1,b=6或a=6,b=1,
∴a+b=7.
故答案为:$\frac{π}{3}$,7.

点评 本题考查三角形的角及边长的求法,涉及到正弦定理、余弦定理等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.函数$f(x)=({x-1}){e^x}-k{x^2}({k∈({\frac{1}{2},1}]})$,则f(x)在[0,k]的最大值h(k)=(  )
A.2ln2-2-(ln2)3B.-1C.2ln2-2-(ln2)2kD.(k-1)ek-k3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知曲线${C_1}:\left\{\begin{array}{l}x=1+cosθ\\ y=sinθ\end{array}\right.$(θ为参数),${C_2}:\left\{\begin{array}{l}x=-\frac{{\sqrt{3}}}{2}t\\ y=\frac{{2\sqrt{3}}}{3}+\frac{t}{2}\end{array}\right.$(t为参数)
(1)曲线C1,C2的交点为A,B,求|AB|;
(2)以原点O为极点,x轴正半轴为极轴,建立极坐标系,过极点的直线l1与C1交于O,C两点,与直线ρsinθ=2交于点D,求$\frac{{|{OC}|}}{{|{OD}|}}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知直线l的参数方程为$\left\{\begin{array}{l}{x=2-\frac{2\sqrt{5}}{5}t}\\{y=1+\frac{\sqrt{5}}{5}t}\end{array}\right.$(t为参数),曲线C:$\frac{{x}^{2}}{4}$+y2=1
(1)求直线l的普通方程和曲线C的参数方程;
(2)若点M在曲线C上运动,试求出M到直线l的距离的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.曲线$\left\{\begin{array}{l}{x=sinθ}\\{y=cos2θ}\end{array}\right.$(θ参数)在y轴上的截距为(  )
A.、$-\frac{1}{2}$B.-1C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在极坐标系中,P是曲线C1:ρ=12sinθ上的动点,Q是曲线C2:ρ=12cos(θ-$\frac{π}{6}$)上的动点,
(1)求曲线C1,C2的平面直角坐标方程并说明表示什么曲线;
(2)试求PQ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若抛物线x2=12y上一点(x0,y0)到焦点的距离是该点到x轴距离的4倍,则y0的值为(  )
A.1B.$\sqrt{2}$C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=|2x-a|+|x-1|,a∈R.
(Ⅰ)若不等式f(x)≥2-|x-1|恒成立,求实数a的取值范围;
(Ⅱ)当a=1时,直线y=m与函数f(x)的图象围成三角形,求m的最大值及此时围成的三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.执行如图所示的程序框图,输出S的值等于(  )
A.$-\frac{{2\sqrt{3}}}{{tan\frac{π}{9}}}-21$B.$\frac{{tan\frac{25π}{9}-\sqrt{3}}}{{tan\frac{π}{9}}}-22$
C.$-\frac{{2\sqrt{3}}}{{tan\frac{π}{9}}}-22$D.$\frac{{tan\frac{25π}{9}-\sqrt{3}}}{{tan\frac{π}{9}}}-21$

查看答案和解析>>

同步练习册答案