精英家教网 > 高中数学 > 题目详情
4.已知曲线${C_1}:\left\{\begin{array}{l}x=1+cosθ\\ y=sinθ\end{array}\right.$(θ为参数),${C_2}:\left\{\begin{array}{l}x=-\frac{{\sqrt{3}}}{2}t\\ y=\frac{{2\sqrt{3}}}{3}+\frac{t}{2}\end{array}\right.$(t为参数)
(1)曲线C1,C2的交点为A,B,求|AB|;
(2)以原点O为极点,x轴正半轴为极轴,建立极坐标系,过极点的直线l1与C1交于O,C两点,与直线ρsinθ=2交于点D,求$\frac{{|{OC}|}}{{|{OD}|}}$的最大值.

分析 (1)方法一:将曲线C1代入曲线C2方程,利用韦达定理及弦长公式,即可求得|AB|;
方法二:就得曲线C2的普通方程,求得交点坐标,根据三角关系,即可求得|AB|;
(2)由题意分别求得丨OC丨及丨OD丨根据二倍角公式,及三角函数的性质即可求得$\frac{{|{OC}|}}{{|{OD}|}}$的最大值.

解答 解:(1)方法一:曲线${C_1}:{(x-1)^2}+{y^2}=1$,${(-\frac{{\sqrt{3}}}{2}t-1)^2}+{(\frac{{2\sqrt{3}}}{3}+\frac{t}{2})^2}=1,{t^2}+\frac{{5\sqrt{3}}}{3}t+\frac{4}{3}=0$,
由韦达定理可知:t1+t2=-$\frac{5\sqrt{3}}{3}$,t1t2=$\frac{4}{3}$,
∴$|{AB}|=|{{t_1}-{t_2}}|=\sqrt{{{({t_1}+{t_2})}^2}-4{t_1}{t_2}}=\sqrt{3}$.
法二:C2为$y=-\frac{{\sqrt{3}}}{3}x+\frac{{2\sqrt{3}}}{3}$,过(2,0),C1过(2,0),不妨令A(2,0),
则∠OBA=90,∠OAB=30,
所以$|{AB}|=2×\frac{{\sqrt{3}}}{2}=\sqrt{3}$.
(2)C1的极坐标方程为ρ=2cosθ,令l1的极角为α,则$|{OD}|={ρ_1}=\frac{2}{sinα},|{OC}|={ρ_2}=2cosα$,
$\frac{{|{OC}|}}{{|{OD}|}}=sinαcosα=\frac{1}{2}sin2α≤\frac{1}{2}$,
∴当$α=\frac{π}{4}$时取最大值,
$\frac{{|{OC}|}}{{|{OD}|}}$的最大值$\frac{1}{2}$.

点评 本题考查直线的参数方程,考查参数方程与普通方程的转化,三角函数的性质,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知函数$f(x)={x^3}-\frac{(3+a)}{2}{x^2}+ax$在(1,2)上不存在最值,则实数a的取值范围为(  )
A.(1,2)B.(-∞,1]∪[2,+∞)C.(-∞,3]∪[6,+∞)D.(3,6)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.三棱锥P-ABC的三条侧棱两两垂直,且PA=PB=PC=1,则其外接球上的点到平面ABC的距离的最大值为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{6}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数$y=2\sqrt{x+3}+5\sqrt{1-x}$的最大值为2$\sqrt{29}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在平面直角坐标系xoy中,已知点A(0,-2),点B(1,-1),P为圆x2+y2=2上一动点,则$\frac{{|\overrightarrow{PB}|}}{{|\overrightarrow{PA}|}}$的最大值是$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=eax+bx(a<0)在点(0,f(0))处的切线方程为y=5x+1,且f(1)+f'(1)=12.
(Ⅰ)求函数y=f(x)的极值;
(Ⅱ)若f(x)>x2+3在x∈[1,m]上恒成立,求正整数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若如图框图所给的程序运行结果为S=41,图中的判断框①中是i>a,则实数a的取值范围是(  )
A.(5,6]B.[5,6)C.(6,7]D.[6,7)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,角A,B,C所对的边分别为a,b,c,已知$csinA=\sqrt{3}acosC$,则C=$\frac{π}{3}$;若$c=\sqrt{31}$,△ABC的面积为$\frac{{3\sqrt{3}}}{2}$,则a+b=7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.右边程序框图的算法思路源于数学名著《几何原本》中的“辗转
相除法”,执行该程序框图(图中“mMODn”表示m除以n的余
数),若输入的m,n分别为495,135,则输出的m=45.

查看答案和解析>>

同步练习册答案