精英家教网 > 高中数学 > 题目详情
14.已知函数$f(x)={x^3}-\frac{(3+a)}{2}{x^2}+ax$在(1,2)上不存在最值,则实数a的取值范围为(  )
A.(1,2)B.(-∞,1]∪[2,+∞)C.(-∞,3]∪[6,+∞)D.(3,6)

分析 要使函数$f(x)={x^3}-\frac{(3+a)}{2}{x^2}+ax$在(1,2)上不存在最值,只需函数f(x)在区间(1,2)上单调即可,即f'(x)=3x2-(a+3)x+a=0在区间(1,2)上无解,即可求实数a的取值范围.

解答 解:f'(x)=3x2-(a+3)x+a;要使函数$f(x)={x^3}-\frac{(3+a)}{2}{x^2}+ax$在(1,2)上不存在最值,
只需函数f(x)在区间(1,2)上单调即可,即3x2-(a+3)x+a=0在区间(1,2)上无解;
a(x-1)=3x(x-1)在区间(1,2)上无解,a=3x在区间(1,2)上无解;,
x∈(1,2)时,3x∈(3,6),
实数a的取值范围为:(-∞,3]∪[6,+∞).
故选:C

点评 本题主要考查利用导数研究函数的单调性,考查函数的最值,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.2016年二十国集团领导人峰会(简称“G20峰会”)于9月4日至5日在浙江杭州召开,为保证会议期间交通畅通,杭州市已发布9月1日至7日为“G20峰会”调休期间.据报道对于杭州市民:浙江省旅游局联合11个市开展一系列旅游惠民活动,活动内容为:“本省游”、“黄山游”、“黔东南游”,某旅游公司为了解群众出游情况,拟采用分层抽样的方法从有意愿“本省游”、“黄山游”、“黔东南游”这三个区域旅游的群众中抽取7人进行某项调查,已知有意愿参加“本省游”、“黄山游”、“黔东南游”的群众分别有360,540,360人.
(1)求从“本省游”、“黄山游”、“黔东南游”,三个区域旅游的群众分别抽取的人数;
(2)若从抽得的7人中随机抽取2人进行调查,用列举法计算这2人中至少有1人有意愿参加“本省游”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在极坐标系中,直线l和圆C的极坐标方程为ρcos(θ+$\frac{π}{6}$)=a(a∈R)和ρ=4sinθ.若直线l与圆C有且只有一个公共点,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=ax3+x2+bx+1在x=1和x=2处都有极值,求a,b,并求出此函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求棱长为a的正四面体的内切球和外接球的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在正方体ABCD-A1B1C1D1中,点M、N分别是直线CD、AB上的动点,点P是△A1C1D内的动点(不包括边界),记直线D1P与MN所成角为θ,若θ的最小值为$\frac{π}{3}$,则点P的轨迹是(  )
A.圆的一部分B.椭圆的一部分C.抛物线的一部分D.双曲线的一部分

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某学校的课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩,若单科成绩在85分以上,则该科成绩为优秀.
序号1234567891011121314151617181920
数学9575809492656784987167936478779057837283
物理9063728791715882938177824885699161847886
(1)请完成下面的 2×2 列联表(单位:人)
数学成绩优秀数学成绩不优秀总计
物理成绩优秀527
物理成绩不优秀11213
总计61420
(2)根据(1)中表格的数据计算,是否有99%的把握,认为学生的数学成绩与物理之间有关系?
P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数$f(x)=({x-1}){e^x}-k{x^2}({k∈({\frac{1}{2},1}]})$,则f(x)在[0,k]的最大值h(k)=(  )
A.2ln2-2-(ln2)3B.-1C.2ln2-2-(ln2)2kD.(k-1)ek-k3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知曲线${C_1}:\left\{\begin{array}{l}x=1+cosθ\\ y=sinθ\end{array}\right.$(θ为参数),${C_2}:\left\{\begin{array}{l}x=-\frac{{\sqrt{3}}}{2}t\\ y=\frac{{2\sqrt{3}}}{3}+\frac{t}{2}\end{array}\right.$(t为参数)
(1)曲线C1,C2的交点为A,B,求|AB|;
(2)以原点O为极点,x轴正半轴为极轴,建立极坐标系,过极点的直线l1与C1交于O,C两点,与直线ρsinθ=2交于点D,求$\frac{{|{OC}|}}{{|{OD}|}}$的最大值.

查看答案和解析>>

同步练习册答案