精英家教网 > 高中数学 > 题目详情
2.设函数f(x)=ax3+x2+bx+1在x=1和x=2处都有极值,求a,b,并求出此函数的极值.

分析 由f′(1)=0,f′(2)=0,解得$\left\{\begin{array}{l}{a=-\frac{2}{9}}\\{b=-\frac{4}{3}}\end{array}\right.$,由导数的符号确定极大、极小值即可.

解答 解:f′(x)=3ax2+2x+b,
∵函数f(x)=ax3+x2+bx+1在x=1和x=2处都有极值.
∴$\left\{\begin{array}{l}{f′(1)=3a+2+b=0}\\{f′(2)=12a+4+b=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=-\frac{2}{9}}\\{b=-\frac{4}{3}}\end{array}\right.$,经检验符合题意.
∴$f′(x)=-\frac{2}{3}{x}^{2}+2x-\frac{4}{3}$,
x∈(-∞,1),(2,+∞)时,f′(x)<0,x∈(1,2)时,f′(x)>0.
函数的增区间为(1,2)
∴函数有极小值f(1)=a+1+b+1=$\frac{4}{9}$.函数有极大值f(2)=8a+4+2b+1=$\frac{5}{9}$

点评 本题考查了利用导数求函数的极值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\left\{\begin{array}{l}-{2^x},x<2\\{log_3}({x^2}-1),x≥2\end{array}$,若f(a)=1,则a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,∠BAC=120°,AC=4,BC=2$\sqrt{7}$,则△ABC的面积为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.我国古代数学名著《九章算术》有“米谷粒分”题:发仓募粮,所募粒中秕不百三则收之(不超过3%),现抽样取米一把,取得235粒米中夹秕n粒,若这批米合格,则n不超过(  )
A.6粒B.7粒C.8粒D.9粒

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知四个函数:①y=-x,②y=-$\frac{1}{x}$,③y=x3,④y=x${\;}^{\frac{1}{2}}$,从中任选2个,则事件“所选2个函数的图象有且仅有一个公共点”的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.正四棱柱的体对角线长为6.面对角线长为3$\sqrt{3}$,则它的侧面积是36$\sqrt{2}$或18$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数$f(x)={x^3}-\frac{(3+a)}{2}{x^2}+ax$在(1,2)上不存在最值,则实数a的取值范围为(  )
A.(1,2)B.(-∞,1]∪[2,+∞)C.(-∞,3]∪[6,+∞)D.(3,6)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知f(x)=x2+3x,若|x-a|≤1,则下列不等式一定成立的是(  )
A.|f(x)-f(a)|≤3|a|+3B.|f(x)-f(a)|≤2|a|+4C.|f(x)-f(a)|≤|a|+5D.|f(x)-f(a)|≤2(|a|+1)2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数$y=2\sqrt{x+3}+5\sqrt{1-x}$的最大值为2$\sqrt{29}$.

查看答案和解析>>

同步练习册答案