分析 由柯西不等式得:[($\sqrt{x+3})^{2}$2+($\sqrt{1-x})^{2}$2][22+52]$≥(2\sqrt{x+3}+5\sqrt{1-x})^{2}$即可求解.
解答 解:由柯西不等式得:[($\sqrt{x+3})^{2}$2+($\sqrt{1-x})^{2}$2][22+52]$≥(2\sqrt{x+3}+5\sqrt{1-x})^{2}$
⇒4×29≥(5$\sqrt{1-x}$+2$\sqrt{x+3}$)2,⇒$5\sqrt{1-x}+2\sqrt{x+3}$$≤2\sqrt{29}$
故答案为:$2\sqrt{29}$.
点评 本题考查了柯西不等式的应用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 2ln2-2-(ln2)3 | B. | -1 | C. | 2ln2-2-(ln2)2k | D. | (k-1)ek-k3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 直线AC与直线EC′所成角为45° | |
| B. | 点E到平面OCD′的距离为$\frac{1}{2}$ | |
| C. | 四面体O EA′B′在平面ABCD上的射影是面积为$\frac{1}{6}$的三角形 | |
| D. | 过点O,E,C的平面截正方体所得截面的面积为$\frac{\sqrt{6}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4π | B. | 8π | C. | 12π | D. | 16π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 分数段 | [60,65) | [65,70) | [70,75) | [75,80) | [80,85) | [85,90) | [90,95) |
| 人数 | 1 | 3 | 6 | 6 | 2 | 1 | 1 |
| A. | 70分 | B. | 75分 | C. | 80分 | D. | 85分 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com