精英家教网 > 高中数学 > 题目详情
20.如图所示,点O为正方体ABCD  A′B′C′D′的中心,点E为棱B′B的中点,若AB=1,则下面说法正确的是(  )
A.直线AC与直线EC′所成角为45°
B.点E到平面OCD′的距离为$\frac{1}{2}$
C.四面体O  EA′B′在平面ABCD上的射影是面积为$\frac{1}{6}$的三角形
D.过点O,E,C的平面截正方体所得截面的面积为$\frac{\sqrt{6}}{2}$

分析 分别计算各选项的问题,得出结论.

解答 解:对于A,连结A′C′,A′E,C′E,则A′C′∥AC,

∴∠A′C′E为直线AC与直线EC′所成角,
在△A′C′E中,A′C′=$\sqrt{2}$,A′E=C′E=$\frac{\sqrt{5}}{2}$,
∴cos∠A′C′E=$\frac{2+\frac{5}{4}-\frac{5}{4}}{2×\sqrt{2}×\frac{\sqrt{5}}{2}}$=$\frac{\sqrt{10}}{5}$,
∴直线AC与直线EC′所成角的余弦值为$\frac{\sqrt{10}}{5}$,故A错误;
对于B,连结CD′,A′B,则O∈平面BCD′A′,

∴B′到平面BCD′A′的距离为$\frac{1}{2}$AB′=$\frac{\sqrt{2}}{2}$,
∴E到平面BCD′A′的距离为$\frac{\sqrt{2}}{4}$,故B错误;
对于C,O在底面ABCD的射影为正方形ABCD的中心,A′的射影为A,B′和E在底面的射影为B,

∴四面体O  EA′B′在平面ABCD上的射影是面积为$\frac{1}{4}$的三角形,故C错误;
对于D,取DD′中点F,连结A′E,A′F,CE,CF,则菱形CEA′F是过O,C,E的平面与正方体的截面,

∵EF=$\sqrt{2}$,A′C=$\sqrt{3}$,∴截面面积S=$\frac{1}{2}×\sqrt{2}×\sqrt{3}$=$\frac{\sqrt{6}}{2}$.故D正确.
故选D.

点评 本题考查了正方体的结构特征,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.我国古代数学名著《九章算术》有“米谷粒分”题:发仓募粮,所募粒中秕不百三则收之(不超过3%),现抽样取米一把,取得235粒米中夹秕n粒,若这批米合格,则n不超过(  )
A.6粒B.7粒C.8粒D.9粒

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知f(x)=x2+3x,若|x-a|≤1,则下列不等式一定成立的是(  )
A.|f(x)-f(a)|≤3|a|+3B.|f(x)-f(a)|≤2|a|+4C.|f(x)-f(a)|≤|a|+5D.|f(x)-f(a)|≤2(|a|+1)2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x2,g(x)=x-1.
(1)若存在x∈R,使f(x)<b•g(x),求实数b的取值范围;
(2)设F(x)=f(x)-mg(x)+1-m,若F(x)≥0在区间[2,5]上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.三棱锥P-ABC的三条侧棱两两垂直,且PA=PB=PC=1,则其外接球上的点到平面ABC的距离的最大值为(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{6}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知A,B,C,D是同一球面上的四个点,其中△ABC是正三角形,AD⊥平面ABC,AD=2AB=6则该球的表面积为32$\sqrt{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数$y=2\sqrt{x+3}+5\sqrt{1-x}$的最大值为2$\sqrt{29}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=eax+bx(a<0)在点(0,f(0))处的切线方程为y=5x+1,且f(1)+f'(1)=12.
(Ⅰ)求函数y=f(x)的极值;
(Ⅱ)若f(x)>x2+3在x∈[1,m]上恒成立,求正整数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设向量$\overrightarrow{BA}$=(3,2),$\overrightarrow{BC}$=(3,-4),$\overrightarrow{AD}$=(0,2),则(  )
A.$\overrightarrow{AB}∥\overrightarrow{BC}$B.$\overrightarrow{AB}∥\overrightarrow{AD}$C.$\overrightarrow{BC}∥\overrightarrow{AC}$D.$\overrightarrow{AC}∥\overrightarrow{AD}$

查看答案和解析>>

同步练习册答案