| A. | $\frac{{\sqrt{3}}}{2}$ | B. | $\frac{{\sqrt{3}}}{6}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{2\sqrt{3}}}{3}$ |
分析 将PA、PB、PC可看作是正方体的一个顶点发出的三条棱,所以过空间四个点P、A、B、C的球面即为的正方体的外接球,球的直径即是正方体的对角线,求出对角线长,即为球的直径,而球心O到平面ABC的距离为体对角线的$\frac{1}{6}$,然后求解结果即可.
解答 解:空间四个点P、A、B、C在同一球面上,PA、PB、PC两两垂直,且PA=PB=PC=1,
则PA、PB、PC可看作是正方体的一个顶点发出的三条棱,
所以过空间四个点P、A、B、C的球面即为的正方体的外接球,球的直径即是正方体的对角线,长为$\sqrt{3}$,
球心O到平面ABC的距离为体对角线的$\frac{1}{6}$,即球心O到平面ABC的距离为$\frac{\sqrt{3}}{6}$.
其外接球上的点到平面ABC的距离的最大值为:$\frac{\sqrt{3}}{2}$+$\frac{\sqrt{3}}{6}$=$\frac{2\sqrt{3}}{3}$.
故选:D.
点评 本题是基础题,考查球的内接体知识,O到面ABC的距离的求法,考查空间想象能力,计算能力,分析出正方体的对角线就是球的直径是解好本题的关键所在.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 数学 | 95 | 75 | 80 | 94 | 92 | 65 | 67 | 84 | 98 | 71 | 67 | 93 | 64 | 78 | 77 | 90 | 57 | 83 | 72 | 83 |
| 物理 | 90 | 63 | 72 | 87 | 91 | 71 | 58 | 82 | 93 | 81 | 77 | 82 | 48 | 85 | 69 | 91 | 61 | 84 | 78 | 86 |
| 数学成绩优秀 | 数学成绩不优秀 | 总计 | |
| 物理成绩优秀 | 5 | 2 | 7 |
| 物理成绩不优秀 | 1 | 12 | 13 |
| 总计 | 6 | 14 | 20 |
| P(K2≥k) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2ln2-2-(ln2)3 | B. | -1 | C. | 2ln2-2-(ln2)2k | D. | (k-1)ek-k3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 直线AC与直线EC′所成角为45° | |
| B. | 点E到平面OCD′的距离为$\frac{1}{2}$ | |
| C. | 四面体O EA′B′在平面ABCD上的射影是面积为$\frac{1}{6}$的三角形 | |
| D. | 过点O,E,C的平面截正方体所得截面的面积为$\frac{\sqrt{6}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4π | B. | 8π | C. | 12π | D. | 16π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com