精英家教网 > 高中数学 > 题目详情
9.求棱长为a的正四面体的内切球和外接球的体积之比.

分析 画出图形,确定两个球的关系,通过正四面体的体积,求出两个球的半径的比值,即可求棱长为a的正四面体的内切球和外接球的体积之比.

解答 解:设正四面体为PABC,两球球心重合,设为O.
设PO的延长线与底面ABC的交点为D,则PD为正四面体PABC的高,PD⊥底面ABC,且PO=R,OD=r,OD=正四面体PABC内切球的高.
设正四面体PABC底面面积为S.
将球心O与四面体的4个顶点PABC全部连接,
可以得到4个全等的正三棱锥,球心为顶点,以正四面体面为底面.
每个正三棱锥体积V1=$\frac{1}{3}$•S•r 而正四面体PABC体积V2=$\frac{1}{3}$•S•(R+r)
根据前面的分析,4•V1=V2
所以,4•$\frac{1}{3}$•S•r=$\frac{1}{3}$•S•(R+r),
所以,R=3r
所以棱长为a的正四面体的内切球和外接球的体积之比为1:27.

点评 本题是中档题,考查正四面体的内切球与外接球的关系,找出两个球的球心重合,半径的关系是解题的关键,考查空间想象能力,计算能力,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.某校举行高二理科学生的数学与物理竞赛,并从中抽取72名学生进行成绩分析,所得学生的及格情况统计如表:
 物理及格物理不及格合计
数学及格28836
数学不及格162036
合计442872
(1)根据表中数据,判断是否是99%的把握认为“数学及格与物理及格有关”;
(2)从抽取的物理不及格的学生中按数学及格与不及格的比例,随机抽取7人,再从抽取的7人中随机抽取2人进行成绩分析,求至少有一名数学及格的学生概率.
附:x2=$\frac{n({n}_{11}{n}_{22}-{n}_{21}{n}_{12})^{2}}{{n}_{1}•{n}_{2}•{n}_{+1}•{n}_{+2}}$.
P(X2≥k)0.1500.1000.0500.010
k2.0722.7063.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}x=3cosα\\ y=\sqrt{3}sinα\end{array}\right.$(α为参数).以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程为$ρcos(θ+\frac{π}{3})=\sqrt{3}$.
(Ⅰ)求直线l的直角坐标方程和曲线C的普通方程;
(Ⅱ)设点P为曲线C上任意一点,求点P到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知四个函数:①y=-x,②y=-$\frac{1}{x}$,③y=x3,④y=x${\;}^{\frac{1}{2}}$,从中任选2个,则事件“所选2个函数的图象有且仅有一个公共点”的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在1907年的一项关于16艘轮船的研究中,船的吨位区间从192t~3246t,船员的人数从5人到32人,由船员人数关于吨位的回归分析得到如下结果:$\widehat{y}$=9.5+0.0062x,假定的两艘轮船的吨位相差1000t,船员平均人数相差6人,对于最小的船估计的船员人数是11人,对于最大的船估计的船员人数是31人.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数$f(x)={x^3}-\frac{(3+a)}{2}{x^2}+ax$在(1,2)上不存在最值,则实数a的取值范围为(  )
A.(1,2)B.(-∞,1]∪[2,+∞)C.(-∞,3]∪[6,+∞)D.(3,6)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在我国古代数学名著《九章算术》中将底面为直角三角形,且侧棱垂直于底面的三棱柱称之为堑堵,如图,在堑堵ABC-A1B1C1中,AB=BC,AA1>AB,堑堵的顶点C1到直线A1C的距离为m,C1到平面A1BC的距离为n,则$\frac{m}{n}$的取值范围是(  )
A.(1,$\frac{2\sqrt{3}}{3}$)B.($\frac{\sqrt{2}}{2}$,$\frac{2\sqrt{3}}{3}$)C.($\frac{2\sqrt{3}}{3}$,$\sqrt{3}$)D.($\frac{2\sqrt{3}}{3}$,$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.为了解高中生对电视台某节目的态度,在某中学随机调查了110名学生,得到如下列联表:
总计
喜欢402060
不喜欢203050
总计6050110
由${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$算得${K^2}=\frac{{110×{{({40×30-20×20})}^2}}}{60×50×60×50}≈7.8$.
附表:
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
参照附表,得到的正确结论是(  )
A.在犯错误的概率不超过0.1%的前提下,认为“喜欢该节目与性别有关”
B.在犯错误的概率不超过0.1%的前提下,认为“喜欢该节目与性别无关”
C.有99%以上的把握认为“喜欢该节目与性别有关”
D.有99%以上的把握认为“喜欢该节目与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在平面直角坐标系xoy中,已知点A(0,-2),点B(1,-1),P为圆x2+y2=2上一动点,则$\frac{{|\overrightarrow{PB}|}}{{|\overrightarrow{PA}|}}$的最大值是$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

同步练习册答案