精英家教网 > 高中数学 > 题目详情
9.执行如图所示的程序框图,输出S的值等于(  )
A.$-\frac{{2\sqrt{3}}}{{tan\frac{π}{9}}}-21$B.$\frac{{tan\frac{25π}{9}-\sqrt{3}}}{{tan\frac{π}{9}}}-22$
C.$-\frac{{2\sqrt{3}}}{{tan\frac{π}{9}}}-22$D.$\frac{{tan\frac{25π}{9}-\sqrt{3}}}{{tan\frac{π}{9}}}-21$

分析 模拟执行程序框图知该程序的功能是计算并输出
S=tan$\frac{4π}{9}$•tan$\frac{3π}{9}$+tan$\frac{5π}{9}$•tan$\frac{4π}{9}$+…+tan$\frac{24π}{9}$•tan$\frac{23π}{9}$的值,
由两角差的正切值公式计算S的值即可.

解答 解:模拟执行如图所示的程序框图知,
该程序的功能是计算并输出
S=tan$\frac{4π}{9}$•tan$\frac{3π}{9}$+tan$\frac{5π}{9}$•tan$\frac{4π}{9}$+…+tan$\frac{24π}{9}$•tan$\frac{23π}{9}$的值,
则S=(1+tan$\frac{4π}{9}$tan$\frac{3π}{9}$)+(1+tan$\frac{5π}{9}$tan$\frac{4π}{9}$)+…+(1+tan$\frac{24π}{9}$tan$\frac{23π}{9}$)-21
=$\frac{tan\frac{4π}{9}-tan\frac{3π}{9}}{tan(\frac{4π}{9}-\frac{3π}{9})}$+$\frac{tan\frac{5π}{9}-tan\frac{4π}{9}}{tan(\frac{5π}{9}-\frac{4π}{9})}$+…+$\frac{tan\frac{24π}{9}-tan\frac{23π}{9}}{tan(\frac{24π}{9}-\frac{23π}{9})}$-21
=$\frac{tan\frac{24π}{9}-tan\frac{3π}{9}}{tan\frac{π}{9}}$-21
=$\frac{tan\frac{8π}{3}-tan\frac{π}{3}}{tan\frac{π}{9}}$-21
=$\frac{-2\sqrt{3}}{tan\frac{π}{9}}$-21.
故选:A.

点评 本题考查了程序框图与两角差的正切公式应用问题,是综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.在△ABC中,角A,B,C所对的边分别为a,b,c,已知$csinA=\sqrt{3}acosC$,则C=$\frac{π}{3}$;若$c=\sqrt{31}$,△ABC的面积为$\frac{{3\sqrt{3}}}{2}$,则a+b=7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.右边程序框图的算法思路源于数学名著《几何原本》中的“辗转
相除法”,执行该程序框图(图中“mMODn”表示m除以n的余
数),若输入的m,n分别为495,135,则输出的m=45.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.为提高市场销售业绩,某公司设计两套产品促销方案(方案1运作费用为5元/件;方案2的运作费用为2元/件),并在某地区部分营销网点进行试点(每个试点网点只采用一种促销方案),运作一年后,对比该地区上一年度的销售情况,分别统计相应营销网点个数,制作相应的列联表如表所示.
无促销活动采用促销方案1采用促销方案2
本年度平均销售额不高于上一年度平均销售额48113190
本年度平均销售额高于上一年度平均销售额526929150
1008060
(Ⅰ)请根据列联表提供的信息,为该公司今年选择一套较为有利的促销方案(不必说明理由);
(Ⅱ)已知该公司产品的成本为10元/件(未包括促销活动运作费用),为制定本年度该地区的产品销售价格,统计上一年度的8组售价xi(单位:元/件,整数)和销量yi(单位:件)(i=1,2,…8)如表所示:
售价x3335373941434547
销量y840800740695640580525460
(ⅰ)请根据下列数据计算相应的相关指数R2,并根据计算结果,选择合适的回归模型进行拟合;
(ⅱ)根据所选回归模型,分析售价x定为多少时?利润z可以达到最大.
$\hat y=-1200lnx+5000$$\hat y=-27x+1700$$\hat y=-\frac{1}{3}{x^2}+1200$
$\sum_{i=1}^8{({y_i}}-{\hat y_i}{)^2}$49428.7411512.43175.26
$\sum_{i=1}^8{({y_i}}-\overline y{)^2}$124650
参考公式:相关指数M.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,a=2,b=3,C=120°,求边c的大小及△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,在等腰直角三角形ABC中,∠C是直角,P是三角形内部一点,且∠CAP=∠BCP=∠ABP=α,则tanα的值等于(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{3}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.P(x,y)是曲线$\left\{\begin{array}{l}x=-2+cosθ\\ y=sinθ\end{array}$(0≤θ<π,θ是参数)上的动点,则$\frac{y}{x}$的取值范围是(  )
A.[-$\frac{\sqrt{3}}{3}$,0]B.[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$]C.[0,$\frac{\sqrt{3}}{3}$]D.(-∞,$\frac{\sqrt{3}}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设f(x)=|3x-2|+|x-2|.
(Ⅰ)解不等式f(x)≤8;
(Ⅱ)对任意的非零实数x,有f(x)≥(m2-m+2)•|x|恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,内角A,B,C所对的边分别为a,b,c,且(2b-c)cosA=acosC,
(1)求A;
(2)若a=2$\sqrt{3}$,求△ABC的BC边上高的最大值.

查看答案和解析>>

同步练习册答案