精英家教网 > 高中数学 > 题目详情
4.在△ABC中,a=2,b=3,C=120°,求边c的大小及△ABC的面积.

分析 先由余弦定理求出$c=\sqrt{19}$,再由正弦定理能求出△ABC的面积.

解答 解:因为a=2,b=3,C=120°,
所以c2=a2+b2-2abcosC=19,
所以$c=\sqrt{19}$,
所以${S_{△ABC}}=\frac{1}{2}absinC=\frac{1}{2}×2×3sin{120°}=\frac{{3\sqrt{3}}}{2}$.

点评 本题考查三角形的边长及三角形面积的求法,涉及到正弦定理、余弦定理等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.曲线$\left\{\begin{array}{l}{x=sinθ}\\{y=cos2θ}\end{array}\right.$(θ参数)在y轴上的截距为(  )
A.、$-\frac{1}{2}$B.-1C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知不等式|2x-3|<x与不等式x2-mx+n<0(m,n∈R)的解集相同.
(Ⅰ)求m-n;
(Ⅱ)若a,b,c∈(0,1),且ab+bc+ac=m-n,求a+b+c的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$均为非零向量,若|($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{c}$|=|($\overrightarrow{a}$-$\overrightarrow{b}$)•$\overrightarrow{c}$|,则(  )
A.$\overrightarrow{a}$∥$\overrightarrow{b}$B.$\overrightarrow{a}$⊥$\overrightarrow{b}$C.$\overrightarrow{a}$∥$\overrightarrow{c}$或$\overrightarrow{b}$∥$\overrightarrow{c}$D.$\overrightarrow{a}$⊥$\overrightarrow{c}$或$\overrightarrow{b}$⊥$\overrightarrow{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知正三棱锥A-BCD中,BC=3$\sqrt{2}$,AB=2$\sqrt{6}$,则三棱锥外接球的表面积为32π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.执行如图所示的程序框图,输出S的值等于(  )
A.$-\frac{{2\sqrt{3}}}{{tan\frac{π}{9}}}-21$B.$\frac{{tan\frac{25π}{9}-\sqrt{3}}}{{tan\frac{π}{9}}}-22$
C.$-\frac{{2\sqrt{3}}}{{tan\frac{π}{9}}}-22$D.$\frac{{tan\frac{25π}{9}-\sqrt{3}}}{{tan\frac{π}{9}}}-21$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,某几何体的三视图都是直角三角形,若几何体的最大棱长为2,则该几何体的外接球的体积是(  )
A.$\sqrt{6}π$B.$\frac{4}{3}π$C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图,若程序框图运行后输出的结果是57,则判断框中应填入的条件是(  )
A.A<4B.A<5C.A≤5D.A≤6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知等差数列{an}前n项和是Sn,公差d=2,a6是a3和a7的等比中项,则满足Sn<0的n的最大值为(  )
A.14B.13C.7D.6

查看答案和解析>>

同步练习册答案