精英家教网 > 高中数学 > 题目详情
19.已知正三棱锥A-BCD中,BC=3$\sqrt{2}$,AB=2$\sqrt{6}$,则三棱锥外接球的表面积为32π.

分析 求出三棱锥底面外接圆的半径,然后求解外接球的半径,然后求解球的表面积.

解答 解:正三棱锥A-BCD中,BC=3$\sqrt{2}$,AB=2$\sqrt{6}$,
底面BCD的外接圆的半径为:$\frac{2}{3}×\frac{\sqrt{3}}{2}×3\sqrt{2}$=$\sqrt{6}$,
三棱锥的高为:$\sqrt{(2\sqrt{6})^{2}-(\sqrt{6})^{2}}$=3$\sqrt{2}$,
设外接球的半径为:r,则:r2=$(\sqrt{6})^{2}+(3\sqrt{2}-r)^{2}$.解得r=2$\sqrt{2}$
则三棱锥外接球的表面积为:4$π×(2\sqrt{2})^{2}$=32π.
故答案为:32π.

点评 本题考查三棱锥的外接球的表面积的求法,求解外接球的半径是解题的关键,考查计算能力空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$+2$\overrightarrow{b}$=(2,-4),3$\overrightarrow{a}$-$\overrightarrow{b}$=(-8,16),则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角的大小为π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,点P满足|PF1|-|PF2|=2a,若$\overrightarrow{PM}$+$\overrightarrow{{F}_{1}M}$=$\overrightarrow{0}$,且M(0,b),则双曲线C的渐近线方程为(  )
A.y=±2xB.y=±$\sqrt{5}$xC.y=±2$\sqrt{2}$xD.y=±$\sqrt{3}$x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.执行如图所示的程序框图,输入的S0值为10时,则输出的S的值为(  )
A.-4B.2C.-20D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在梯形ABCD中,AB∥CD,AB=1,AC=2,BD=2$\sqrt{3}$,∠ACD=60°,则AD=(  )
A.2B.$\sqrt{7}$C.$\sqrt{19}$D.$13-6\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,a=2,b=3,C=120°,求边c的大小及△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.有限与无限转化是数学中一种重要思想方法,如在《九章算术》方田章圆田术(刘徽注)中:“割之又割以至于不可割,则与圆合体而无所失矣.”说明“割圆术”是一种无限与有限的转化过程,再如$\sqrt{2+\sqrt{2+\sqrt{2+…}}}$中“…”即代表无限次重复,但原式却是个定值x.这可以通过方程$\sqrt{2+x}$=x确定出来x=2,类似地可以把循环小数化为分数,把0.$\stackrel{•}{3}\stackrel{•}{6}$化为分数的结果为$\frac{4}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图所示的程序框图描述的算法称为“欧几里得”辗转相除法,若输入m=2821,n=2015,则输出的m的值为(  )
A.1B.403C.806D.2015

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知数列{an}中,点(an,an+1)在直线y=x+2上,首项a1=1.数列{an}的通项公式为an=2n-1.

查看答案和解析>>

同步练习册答案