| A. | y=±2x | B. | y=±$\sqrt{5}$x | C. | y=±2$\sqrt{2}$x | D. | y=±$\sqrt{3}$x |
分析 利用已知条件求出P的坐标,代入双曲线方程得到a,b 的关系式,然后求解渐近线方程.
解答 解:双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,点P满足|PF1|-|PF2|=2a,
若$\overrightarrow{PM}$+$\overrightarrow{{F}_{1}M}$=$\overrightarrow{0}$,且M(0,b),
可得P(c,2b),
则:$\frac{{c}^{2}}{{a}^{2}}-\frac{4{b}^{2}}{{b}^{2}}=1$,解得c2=5a2,可得b2=4a2,即b=2a,
双曲线C的渐近线方程为:y=±2x.
故选:A.
点评 本题考查双曲线的简单性质的应用,考查计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{e}f(2)<f(1)$ | B. | $\frac{2}{e}f(2)>f(1)$ | C. | f(1)>0 | D. | f(-1)>0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 12 | B. | 24 | C. | 36 | D. | 48 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{3}{2}$ | B. | 1 | C. | $\frac{1}{2}$ | D. | 5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com