精英家教网 > 高中数学 > 题目详情
2.根据如图所示的等高条形图回答,吸烟与患肺病有关系.(“有”或“没有”)

分析 根据条形图的高度差判断.

解答 解:由图示可知等高条形图的差别较大,
故认为吸烟与患肺病有关系.
故答案为:有.

点评 本题考查了分类变量的相关关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.设$f(x)=\frac{(4x+a)lnx}{3x+1}$,曲线y=f(x)在点(1,f(1))处的切线与直线x+y+1=0垂直.
(1)求a的值;
(2)若对于任意的x∈[1,+∞),f(x)≤m(x-1)恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系中.圆C的参数方程为$\left\{\begin{array}{l}{x=2cosα}\\{y=3+2sinα}\end{array}\right.$(α为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,点D的极坐标为(ρ1,π).
(1)求圆C的极坐标方程;
(2)过点D作圆C的切线,切点分别为A,B,且∠ADB=60°,求ρ1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,点P满足|PF1|-|PF2|=2a,若$\overrightarrow{PM}$+$\overrightarrow{{F}_{1}M}$=$\overrightarrow{0}$,且M(0,b),则双曲线C的渐近线方程为(  )
A.y=±2xB.y=±$\sqrt{5}$xC.y=±2$\sqrt{2}$xD.y=±$\sqrt{3}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数$f(x)=\sqrt{1+{x^2}}$,x∈R.
(1)证明对?a、b∈R,且a≠b,总有:|f(a)-f(b)|<|a-b|;
(2)设a、b、c∈R,且$a+b+c=f(2\sqrt{2})$,证明:a+b+c≥ab+bc+ca.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.执行如图所示的程序框图,输入的S0值为10时,则输出的S的值为(  )
A.-4B.2C.-20D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在梯形ABCD中,AB∥CD,AB=1,AC=2,BD=2$\sqrt{3}$,∠ACD=60°,则AD=(  )
A.2B.$\sqrt{7}$C.$\sqrt{19}$D.$13-6\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.有限与无限转化是数学中一种重要思想方法,如在《九章算术》方田章圆田术(刘徽注)中:“割之又割以至于不可割,则与圆合体而无所失矣.”说明“割圆术”是一种无限与有限的转化过程,再如$\sqrt{2+\sqrt{2+\sqrt{2+…}}}$中“…”即代表无限次重复,但原式却是个定值x.这可以通过方程$\sqrt{2+x}$=x确定出来x=2,类似地可以把循环小数化为分数,把0.$\stackrel{•}{3}\stackrel{•}{6}$化为分数的结果为$\frac{4}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知ω为正整数,函数f(x)=sinωxcosωx+${cos^2}ωx-\frac{1}{2}$在区间$({-\frac{π}{3},\frac{π}{12}})$内单调递增,则函数f(x)(  )
A.最小值为$-\frac{1}{2}$,其图象关于点$({\frac{π}{4},0})$对称
B.最大值为$\frac{{\sqrt{2}}}{2}$,其图象关于直线$x=-\frac{π}{8}$对称
C.最小正周期为2π,其图象关于点$({\frac{3π}{4},0})$对称
D.最小正周期为π,其图象关于直线$x=-\frac{3π}{8}$对称

查看答案和解析>>

同步练习册答案