精英家教网 > 高中数学 > 题目详情
14.在梯形ABCD中,AB∥CD,AB=1,AC=2,BD=2$\sqrt{3}$,∠ACD=60°,则AD=(  )
A.2B.$\sqrt{7}$C.$\sqrt{19}$D.$13-6\sqrt{3}$

分析 由余弦定理先求出BC=$\sqrt{3}$,再由勾股定理求出$∠ABC=∠BCD=\frac{π}{2}$,从而CD=3,由此利用余弦定理能求出AD=$\sqrt{9+4-2×3×2×cos60°}$=$\sqrt{7}$.

解答 解:∵在梯形ABCD中,AB∥CD,AB=1,AC=2,BD=2$\sqrt{3}$,∠ACD=60°,
∴∠BAC=60°,∴BC=$\sqrt{4+1-2×2×1×cos60°}$=$\sqrt{3}$,
∴AB2+BC2=AC2,∴$∠ABC=∠BCD=\frac{π}{2}$,
∴CD=$\sqrt{(2\sqrt{3})^{2}-(\sqrt{3})^{2}}$=3,
∴AD=$\sqrt{9+4-2×3×2×cos60°}$=$\sqrt{7}$.
故选:B.

点评 本题考查三角形边长的求法,涉及到正弦定理、余弦定理等基础知识,考查推理论证能力、运算求解能力,考查函数与方思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.不等式32x+a•3x+b<0(a、b∈R)的解集是{x|0<x<3},则a+b等于-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知f(x)=|ax-4|-|ax+8|,a∈R,若f(x)≤k恒成,求k的取值范围[12,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.根据如图所示的等高条形图回答,吸烟与患肺病有关系.(“有”或“没有”)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.执行如图所示的程序框图,若输出的结果为S=1320,则判断框内应填入的内容是(  )
A.K<9?B.K<10?C.K<11?D.K<12?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知正三棱锥A-BCD中,BC=3$\sqrt{2}$,AB=2$\sqrt{6}$,则三棱锥外接球的表面积为32π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知过曲线$\left\{\begin{array}{l}{x=3sinθ}\\{y=3cosθ}\end{array}\right.$(θ为参数,0≤θ≤π)上一点P与原点O的直线PO的倾斜角为$\frac{π}{2}$,则P点坐标是(  )
A.(0,3)B.$(-\frac{12}{5},-\frac{12}{5})$C.(-3,0)D.$(\frac{12}{5},\frac{12}{5})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数g(x)=1-cos(πx+ϕ)(0≤ϕ<π)的图象过($\frac{1}{2}$,2),若有4个不同的正数xi满足g(xi)=M(0<M<1),且xi<4(i=1,2,3,4),则从这四个数中任意选出两个,它们的和不超过5的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知锐角三角形ABC的内角A,B,C的对边分别为a,b,c且b=acosC+$\frac{\sqrt{3}}{3}$csinA,
(1)求角A的值;
(2)若a=2,求△ABC面积的最大值.

查看答案和解析>>

同步练习册答案