分析 (1)由正弦定理得:$sinB=sinAcosC+\frac{{\sqrt{3}}}{3}sinCsinA$,即 $sin(A+C)=sinAcosC+\frac{{\sqrt{3}}}{3}sinCsinA$,化简得:$tanA=\sqrt{3}$,解得A=$\frac{π}{3}$.
(2)由余弦定理得:a2=b2+c2-2bccosA⇒4=b2+c2-bc≥2bc-bc,即bc≤4,故$S=\frac{1}{2}bcsinA≤\frac{1}{2}×4×\frac{{\sqrt{3}}}{2}=\sqrt{3}$.
解答 解:(1)在三角形ABC中,因为$b=acosC+\frac{{\sqrt{3}}}{3}csinA$,
由正弦定理得:$sinB=sinAcosC+\frac{{\sqrt{3}}}{3}sinCsinA$,即 $sin(A+C)=sinAcosC+\frac{{\sqrt{3}}}{3}sinCsinA$
化简得:$cosAsinC=\frac{{\sqrt{3}}}{3}sinCsinA$
因为sinC≠0,所以$tanA=\sqrt{3}$
因为A∈(0,π),所以A=$\frac{π}{3}$…(6分)
(2)因为a=2,$A=\frac{π}{3}$,由余弦定理得:a2=b2+c2-2bccosA⇒4=b2+c2-bc≥2bc-bc,
即bc≤4,当且仅当b=c时取等号.
故$S=\frac{1}{2}bcsinA≤\frac{1}{2}×4×\frac{{\sqrt{3}}}{2}=\sqrt{3}$,
所以,当三角形为等边三角形时,三角形的面积有最大值为$\sqrt{3}$…(12分)
点评 本题考查了正余弦定理、三角形面积计算、不等式的性质,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\sqrt{7}$ | C. | $\sqrt{19}$ | D. | $13-6\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 最小值为$-\frac{1}{2}$,其图象关于点$({\frac{π}{4},0})$对称 | |
| B. | 最大值为$\frac{{\sqrt{2}}}{2}$,其图象关于直线$x=-\frac{π}{8}$对称 | |
| C. | 最小正周期为2π,其图象关于点$({\frac{3π}{4},0})$对称 | |
| D. | 最小正周期为π,其图象关于直线$x=-\frac{3π}{8}$对称 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,1) | B. | [-1,0]∪[1,2) | C. | (-2,-1)∪[0,1] | D. | [0,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}{e^3}$ | B. | $\frac{{\sqrt{2}}}{2}{e^3}$ | C. | $\frac{{\sqrt{3}}}{2}{e^3}$ | D. | e3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 最小正周期为2π的偶函数 | B. | 最小正周期为2π的奇函数 | ||
| C. | 最小正周期为π的偶函数 | D. | 最小正周期为π的奇函数 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com