精英家教网 > 高中数学 > 题目详情
19.已知全集U=R,集合A={x|x(x+2)<0},B={x||x|≤1},则如图阴影部分表示的集合是(  )
A.(-2,1)B.[-1,0]∪[1,2)C.(-2,-1)∪[0,1]D.[0,1]

分析 根据阴影部分对应的集合为∁U(A∩B)∩(A∪B),然后根据集合的基本运算进行求解即可.

解答 解:A={x||-2<x<0},B={x|-1≤x≤1},
由题意可知阴影部分对应的集合为∁U(A∩B)∩(A∪B),
∴A∩B={x|-1≤x<0},A∪B={x|-2<x≤1},
即∁U(A∩B)={x|x<-1或x≥0},
∴∁U(A∩B)∩(A∪B)={x|0≤x≤1或-2<x<-1},
故选:C

点评 本题主要考查集合的基本运算,利用阴影部分表示出集合关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.执行如图所示的程序框图,若输出的结果为S=1320,则判断框内应填入的内容是(  )
A.K<9?B.K<10?C.K<11?D.K<12?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图是“二分法”求方程近似解的流程图,在①,②处应填写的内容分别是(  )
A.f(a)•f(m)<0?;b=mB.f(b)•f(m)<0?;b=mC.f(a)•f(m)<0?;m=bD.f(b)•f(m)<0?;b=m

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,某生态园将一块三角形地ABC的一角APQ开辟为水果园,已知角A为120°,AB,AC的长度均大于200米,现在边界AP,AQ处建围墙,在PQ处围竹篱笆.
(1)若围墙AP、AQ总长度为200米,如何可使得三角形地块APQ面积最大?
(2)已知竹篱笆长为$50\sqrt{3}$米,AP段围墙高1米,AQ段围墙高2米,造价均为每平方米100元,求围墙总造价的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.《孙子算经》是我国古代内容极为丰富的数学名著,其中一个问题的解答可以用如图的算法来实现,若输入的S,T的值分别为40,126,则输出a,b的值分别为(  )
A.17,23B.21,21C.19,23D.20,20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知锐角三角形ABC的内角A,B,C的对边分别为a,b,c且b=acosC+$\frac{\sqrt{3}}{3}$csinA,
(1)求角A的值;
(2)若a=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设集合A={-1,0,1,2,3},B={x|x2-2x>0},则A∩(∁RB)=(  )
A.{-1,3}B.{0,1,2}C.{1,2,3}D.{0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.复数$\frac{{(1-i{)^2}}}{3-i}$的值是(  )
A.$-\frac{1}{4}+\frac{3}{4}i$B.$\frac{1}{4}-\frac{3}{4}i$C.$-\frac{1}{5}+\frac{3}{5}i$D.$\frac{1}{5}-\frac{3}{5}i$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图是某赛季甲、乙两名篮球运动员每场比赛得分的茎叶图,则甲、乙两人这几场比赛得分的中位数分别是18,23.

查看答案和解析>>

同步练习册答案