精英家教网 > 高中数学 > 题目详情
9.执行如图所示的程序框图,若输出的结果为S=1320,则判断框内应填入的内容是(  )
A.K<9?B.K<10?C.K<11?D.K<12?

分析 根据程序框图的流程,依次计算运行的结果,根据输出的结果判断终止运行的K值,可得答案.

解答 解:由程序框图知第一次运行S=1×12=12,K=12-1=11;
第二次运行S=12×11=132,K=11-1=10;
第三次运行S=132×10=1320,K=10-1=9;
∵输出的结果是S=1320,
∴K=9时运行终止,
∴判断框应填K≤9?或K<10?.
故选:B.

点评 本题考查了循环结构的程序框图,由程序框图判断程序运行的流程是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ax2ex+blnx,且在P(1,f(1))处的切线方程为(3e-1)x-y+1-2e=0,g(x)=($\frac{2}{x}$-1)ln(x-2)+$\frac{lnx-1}{x}$+1.
(1)求a,b的值;
(2)证明:f(x)的最小值与g(x)的最大值相等.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=|x-2|+|x-4|的最小值为m,正实数a,b满足a+b=m.
(1)求m的值;
(2)求证:$\frac{1}{a}+\frac{1}{b}$≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数$f(x)=\sqrt{1+{x^2}}$,x∈R.
(1)证明对?a、b∈R,且a≠b,总有:|f(a)-f(b)|<|a-b|;
(2)设a、b、c∈R,且$a+b+c=f(2\sqrt{2})$,证明:a+b+c≥ab+bc+ca.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.把参数方程$\left\{\begin{array}{l}{x=\frac{4k}{1-{k}^{2}}}\\{y=\frac{4{k}^{2}}{1-{k}^{2}}}\end{array}\right.$(k为参数)化为普通方程,并说明它表示什么曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在梯形ABCD中,AB∥CD,AB=1,AC=2,BD=2$\sqrt{3}$,∠ACD=60°,则AD=(  )
A.2B.$\sqrt{7}$C.$\sqrt{19}$D.$13-6\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若f(x)是定义在R上的可导函数,且对任意x∈R,满足f(x)+f'(x)>0,则对任意实数a,b(  )
A.a>b?eaf(b)>ebf(a)B.a>b?eaf(b)<ebf(a)C.a>b?eaf(a)<ebf(b)D.a>b?eaf(a)>ebf(b)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,∠B=$\frac{π}{6}$,AC=$\sqrt{5}$,D是AB边上一点,CD=2,△ACD的面积为2,∠ACD为锐角,则BC=$\frac{8\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知全集U=R,集合A={x|x(x+2)<0},B={x||x|≤1},则如图阴影部分表示的集合是(  )
A.(-2,1)B.[-1,0]∪[1,2)C.(-2,-1)∪[0,1]D.[0,1]

查看答案和解析>>

同步练习册答案