精英家教网 > 高中数学 > 题目详情
18.在△ABC中,∠B=$\frac{π}{6}$,AC=$\sqrt{5}$,D是AB边上一点,CD=2,△ACD的面积为2,∠ACD为锐角,则BC=$\frac{8\sqrt{5}}{5}$.

分析 推导出sin∠ACD=$\frac{2}{\sqrt{5}}$,cos∠ACD=$\frac{\sqrt{5}}{5}$,由余弦定理得AD=$\sqrt{5}$,由正弦定理,得sinA=$\frac{4}{5}$,由此利用正弦定理能求出BC的长.

解答 解:∵在△ABC中,∠B=$\frac{π}{6}$,AC=$\sqrt{5}$,D是AB边上一点,CD=2,
△ACD的面积为2,∠ACD为锐角,
∴S△ACD=$\frac{1}{2}×2×\sqrt{5}$×sin∠ACD=2,解得sin∠ACD=$\frac{2}{\sqrt{5}}$,
∴cos∠ACD=$\sqrt{1-(\frac{2}{\sqrt{5}})^{2}}$=$\frac{\sqrt{5}}{5}$,
∴AD=$\sqrt{5+4-2×2×\sqrt{5}×cos∠ACD}$=$\sqrt{5}$,
由正弦定理,得:$\frac{2}{sinA}=\frac{\sqrt{5}}{sin∠ACD}$,解得sinA=$\frac{2×\frac{2}{\sqrt{5}}}{\sqrt{5}}$=$\frac{4}{5}$,
又$\frac{BC}{sinA}=\frac{AC}{sinB}$,∴BC=$\frac{ACsinA}{sinB}$=$\frac{\sqrt{5}×\frac{4}{5}}{\frac{1}{2}}$=$\frac{8\sqrt{5}}{5}$.
故答案为:$\frac{8\sqrt{5}}{5}$.

点评 本题考查三角形边长的求法,涉及到正弦定理、余弦定理等基础知识,考查推理论证能力、运算求解能力,考查函数与方思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.某四棱锥的三视图如图所示,则最长的一条侧棱的长度是(  )
A.$2\sqrt{5}$B.$4\sqrt{2}$C.$\sqrt{29}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.执行如图所示的程序框图,若输出的结果为S=1320,则判断框内应填入的内容是(  )
A.K<9?B.K<10?C.K<11?D.K<12?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知过曲线$\left\{\begin{array}{l}{x=3sinθ}\\{y=3cosθ}\end{array}\right.$(θ为参数,0≤θ≤π)上一点P与原点O的直线PO的倾斜角为$\frac{π}{2}$,则P点坐标是(  )
A.(0,3)B.$(-\frac{12}{5},-\frac{12}{5})$C.(-3,0)D.$(\frac{12}{5},\frac{12}{5})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.执行如图所示的程序框图,则输出s的值等于(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数g(x)=1-cos(πx+ϕ)(0≤ϕ<π)的图象过($\frac{1}{2}$,2),若有4个不同的正数xi满足g(xi)=M(0<M<1),且xi<4(i=1,2,3,4),则从这四个数中任意选出两个,它们的和不超过5的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图是“二分法”求方程近似解的流程图,在①,②处应填写的内容分别是(  )
A.f(a)•f(m)<0?;b=mB.f(b)•f(m)<0?;b=mC.f(a)•f(m)<0?;m=bD.f(b)•f(m)<0?;b=m

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,某生态园将一块三角形地ABC的一角APQ开辟为水果园,已知角A为120°,AB,AC的长度均大于200米,现在边界AP,AQ处建围墙,在PQ处围竹篱笆.
(1)若围墙AP、AQ总长度为200米,如何可使得三角形地块APQ面积最大?
(2)已知竹篱笆长为$50\sqrt{3}$米,AP段围墙高1米,AQ段围墙高2米,造价均为每平方米100元,求围墙总造价的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.复数$\frac{{(1-i{)^2}}}{3-i}$的值是(  )
A.$-\frac{1}{4}+\frac{3}{4}i$B.$\frac{1}{4}-\frac{3}{4}i$C.$-\frac{1}{5}+\frac{3}{5}i$D.$\frac{1}{5}-\frac{3}{5}i$

查看答案和解析>>

同步练习册答案