精英家教网 > 高中数学 > 题目详情
6.已知过曲线$\left\{\begin{array}{l}{x=3sinθ}\\{y=3cosθ}\end{array}\right.$(θ为参数,0≤θ≤π)上一点P与原点O的直线PO的倾斜角为$\frac{π}{2}$,则P点坐标是(  )
A.(0,3)B.$(-\frac{12}{5},-\frac{12}{5})$C.(-3,0)D.$(\frac{12}{5},\frac{12}{5})$

分析 先求出该曲线的普通方程为x2+y2=9(x≥0),由点P与原点O的直线PO的倾斜角为$\frac{π}{2}$,能求出P点坐标.

解答 解:曲线$\left\{\begin{array}{l}{x=3sinθ}\\{y=3cosθ}\end{array}\right.$(θ为参数,0≤θ≤π)消去数得:
该曲线的普通方程为x2+y2=9(x≥0),
设P(3sinθ,3cosθ),
∵点P与原点O的直线PO的倾斜角为$\frac{π}{2}$,
∴P(0,3).
故选:A.

点评 本题考查点的坐标的求法,考查极坐标方程、直角坐标方程、参数方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.在公差不为0的等差数列{an}中,a22=a3+a6,且a3为a1与a11的等比中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=(-1)n$\frac{n}{({a}_{n}-\frac{1}{2})({a}_{n+1}-\frac{1}{2})}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数$f(x)=\sqrt{1+{x^2}}$,x∈R.
(1)证明对?a、b∈R,且a≠b,总有:|f(a)-f(b)|<|a-b|;
(2)设a、b、c∈R,且$a+b+c=f(2\sqrt{2})$,证明:a+b+c≥ab+bc+ca.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在梯形ABCD中,AB∥CD,AB=1,AC=2,BD=2$\sqrt{3}$,∠ACD=60°,则AD=(  )
A.2B.$\sqrt{7}$C.$\sqrt{19}$D.$13-6\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若f(x)是定义在R上的可导函数,且对任意x∈R,满足f(x)+f'(x)>0,则对任意实数a,b(  )
A.a>b?eaf(b)>ebf(a)B.a>b?eaf(b)<ebf(a)C.a>b?eaf(a)<ebf(b)D.a>b?eaf(a)>ebf(b)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.有限与无限转化是数学中一种重要思想方法,如在《九章算术》方田章圆田术(刘徽注)中:“割之又割以至于不可割,则与圆合体而无所失矣.”说明“割圆术”是一种无限与有限的转化过程,再如$\sqrt{2+\sqrt{2+\sqrt{2+…}}}$中“…”即代表无限次重复,但原式却是个定值x.这可以通过方程$\sqrt{2+x}$=x确定出来x=2,类似地可以把循环小数化为分数,把0.$\stackrel{•}{3}\stackrel{•}{6}$化为分数的结果为$\frac{4}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,∠B=$\frac{π}{6}$,AC=$\sqrt{5}$,D是AB边上一点,CD=2,△ACD的面积为2,∠ACD为锐角,则BC=$\frac{8\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.根据如图所示的伪代码知,输出的a的值为21.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知a,b∈R,且ex+1≥ax+b对?x∈R恒成立(其中e为自然对数的底数),则ab的最大值为(  )
A.$\frac{1}{2}{e^3}$B.$\frac{{\sqrt{2}}}{2}{e^3}$C.$\frac{{\sqrt{3}}}{2}{e^3}$D.e3

查看答案和解析>>

同步练习册答案