精英家教网 > 高中数学 > 题目详情
16.在公差不为0的等差数列{an}中,a22=a3+a6,且a3为a1与a11的等比中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=(-1)n$\frac{n}{({a}_{n}-\frac{1}{2})({a}_{n+1}-\frac{1}{2})}$,求数列{bn}的前n项和Tn

分析 (Ⅰ)运用等差数列的通项公式和等比数列中项的性质,解方程可得首项和公差,即可得到所求通项公式;
(Ⅱ)化简bn=(-1)n$\frac{n}{(3n-\frac{3}{2})(3n+\frac{3}{2})}$=$\frac{1}{9}$•(-1)n•($\frac{1}{2n-1}$+$\frac{1}{2n+1}$),再由数列的求和方法:裂项相消求和,即可得到所求和.

解答 解:(Ⅰ)在公差d不为0的等差数列{an}中,a22=a3+a6
且a3为a1与a11的等比中项.
可得(a1+d)2=2a1+7d,且a32=a1a11,即(a1+2d)2=a1(a1+10d),
解得a1=2,d=3,
则an=2+3(n-1)=3n-1,n∈N*;
(Ⅱ)bn=(-1)n$\frac{n}{({a}_{n}-\frac{1}{2})({a}_{n+1}-\frac{1}{2})}$=(-1)n$\frac{n}{(3n-\frac{3}{2})(3n+\frac{3}{2})}$
=$\frac{1}{9}$•(-1)n•$\frac{4n}{(2n-1)(2n+1)}$=$\frac{1}{9}$•(-1)n•($\frac{1}{2n-1}$+$\frac{1}{2n+1}$),
∴Tn=b1+b2+b3+…+bn=$\frac{1}{9}$[-($\frac{1}{1}$+$\frac{1}{3}$)+($\frac{1}{3}$+$\frac{1}{5}$)-($\frac{1}{5}$+$\frac{1}{7}$)+…+(-1)n•($\frac{1}{2n-1}$+$\frac{1}{2n+1}$)]
=$\frac{1}{9}$[-1+(-1)n•$\frac{1}{2n+1}$)].

点评 本题考查等差数列的通项公式的求法,注意运用方程思想,考查数列的求和方法:裂项相消求和,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{1}{2}$x2-x+alnx(a>0)有两个极值点x1、x2,且x1<x2
(1)求a的取值范围;
(2)证明:f(x1)+f(x2)>$\frac{-3-2ln2}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某校举行高二理科学生的数学与物理竞赛,并从中抽取72名学生进行成绩分析,所得学生的及格情况统计如表:
物理及格物理不及格合计
数学及格28836
数学不及格162036
合计442872
(1)根据表中数据,判断是否是99%的把握认为“数学及格与物理及格有关”;
(2)若以抽取样本的频率为概率,现在该校高二理科学生中,从数学及格的学生中随机抽取3人,记X为这3人中物理不及格的人数,从数学不及格学生中随机抽取2人,记Y为这2人中物理不及格的人数,记ξ=|X-Y|,求ξ的分布列及数学期望.
附:x2=$\frac{n({n}_{11}{n}_{22}-{n}_{21}{n}_{12})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$.
P(X2≥k)0.1500.1000.0500.010
k2.0722.7063.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.不等式32x+a•3x+b<0(a、b∈R)的解集是{x|0<x<3},则a+b等于-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.以椭圆$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}$=1的焦点为焦点的双曲线,如果离心率为2,那么该曲线的渐近线方程为y=±$\sqrt{3}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.定义在R上的函数f(x)的导函数为f'(x),且f(x)+xf'(x)<xf(x)对x∈R恒成立,则(  )
A.$\frac{2}{e}f(2)<f(1)$B.$\frac{2}{e}f(2)>f(1)$C.f(1)>0D.f(-1)>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某四棱锥的三视图如图所示,则最长的一条侧棱的长度是(  )
A.$2\sqrt{5}$B.$4\sqrt{2}$C.$\sqrt{29}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知f(x)=|ax-4|-|ax+8|,a∈R,若f(x)≤k恒成,求k的取值范围[12,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知过曲线$\left\{\begin{array}{l}{x=3sinθ}\\{y=3cosθ}\end{array}\right.$(θ为参数,0≤θ≤π)上一点P与原点O的直线PO的倾斜角为$\frac{π}{2}$,则P点坐标是(  )
A.(0,3)B.$(-\frac{12}{5},-\frac{12}{5})$C.(-3,0)D.$(\frac{12}{5},\frac{12}{5})$

查看答案和解析>>

同步练习册答案