1£®Ä³Ð£¾ÙÐи߶þÀí¿ÆÑ§ÉúµÄÊýѧÓëÎïÀí¾ºÈü£¬²¢´ÓÖгéÈ¡72ÃûѧÉú½øÐгɼ¨·ÖÎö£¬ËùµÃѧÉúµÄ¼°¸ñÇé¿öͳ¼ÆÈç±í£º
ÎïÀí¼°¸ñÎïÀí²»¼°¸ñºÏ¼Æ
Êýѧ¼°¸ñ28836
Êýѧ²»¼°¸ñ162036
ºÏ¼Æ442872
£¨1£©¸ù¾Ý±íÖÐÊý¾Ý£¬ÅжÏÊÇ·ñÊÇ99%µÄ°ÑÎÕÈÏΪ¡°Êýѧ¼°¸ñÓëÎïÀí¼°¸ñÓйء±£»
£¨2£©ÈôÒÔ³éÈ¡Ñù±¾µÄƵÂÊΪ¸ÅÂÊ£¬ÏÖÔÚ¸ÃУ¸ß¶þÀí¿ÆÑ§ÉúÖУ¬´ÓÊýѧ¼°¸ñµÄѧÉúÖÐËæ»ú³éÈ¡3ÈË£¬¼ÇXΪÕâ3ÈËÖÐÎïÀí²»¼°¸ñµÄÈËÊý£¬´ÓÊýѧ²»¼°¸ñѧÉúÖÐËæ»ú³éÈ¡2ÈË£¬¼ÇYΪÕâ2ÈËÖÐÎïÀí²»¼°¸ñµÄÈËÊý£¬¼Ç¦Î=|X-Y|£¬Çó¦ÎµÄ·Ö²¼Áм°ÊýѧÆÚÍû£®
¸½£ºx2=$\frac{n£¨{n}_{11}{n}_{22}-{n}_{21}{n}_{12}£©^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$£®
P£¨X2¡Ýk£©0.1500.1000.0500.010
k2.0722.7063.8416.635

·ÖÎö £¨1£©¸ù¾ÝÌâÒ⣬Çó³öX2=$\frac{1800}{143}$¡Ö12.587£¾6.635£¬´Ó¶øÓÐ99%µÄ°ÑÎÕÈÏΪ¡°Êýѧ¼°¸ñÓëÎïÀí¼°¸ñÓйء±£®
£¨2£©´ÓÊýѧ¼°¸ñµÄѧÉúÈγéȡһÈË£¬³éµ½ÎïÀí²»¼°¸ñµÄѧÉúµÄƵÂÊΪ$\frac{9}{36}$=$\frac{1}{4}$£¬´ÓÊýѧ²»¼°¸ñµÄѧÉúÈÎȡһÈË£¬³éµ½ÎïÀí²»¼°¸ñµÄѧÉúµÄƵÂÊΪ$\frac{24}{36}$=$\frac{2}{3}$£¬X¿ÉÄܵÄȡֵΪ0£¬1£¬2£¬3£¬Y¿ÉÄܵÄȡֵΪ0£¬1£¬2£¬¦ÎµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³ö¦ÎµÄ·Ö²¼ÁкÍE¦Î£®

½â´ð ½â£º£¨1£©¸ù¾ÝÌâÒ⣬µÃ£º
${x}^{2}=\frac{72£¨27¡Á24-12¡Á9£©^{2}}{39¡Á33¡Á36¡Á36}$=$\frac{1800}{143}$¡Ö12.587£¬
¡ß12.587£¾6.635£¬
¡àÓÐ99%µÄ°ÑÎÕÈÏΪ¡°Êýѧ¼°¸ñÓëÎïÀí¼°¸ñÓйء±£®
£¨2£©´ÓÊýѧ¼°¸ñµÄѧÉúÈγéȡһÈË£¬³éµ½ÎïÀí²»¼°¸ñµÄѧÉúµÄƵÂÊΪ$\frac{9}{36}$=$\frac{1}{4}$£¬
´ÓÊýѧ²»¼°¸ñµÄѧÉúÈÎȡһÈË£¬³éµ½ÎïÀí²»¼°¸ñµÄѧÉúµÄƵÂÊΪ$\frac{24}{36}$=$\frac{2}{3}$£¬
X¿ÉÄܵÄȡֵΪ0£¬1£¬2£¬3£¬Y¿ÉÄܵÄȡֵΪ0£¬1£¬2£¬
¦ÎµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬
P£¨¦Î=0£©=P£¨X=0£©P£¨Y=0£©+P£¨X=1£©P£¨Y=1£©+P£¨X=2£©P£¨Y=2£©
=${C}_{3}^{0}£¨\frac{3}{4}£©^{3}$•${C}_{2}^{0}£¨\frac{1}{3}£©^{2}$+${C}_{3}^{1}£¨\frac{1}{4}£©£¨\frac{3}{4}£©^{2}•{C}_{2}^{1}£¨\frac{2}{3}£©£¨\frac{1}{3}£©$+${C}_{3}^{2}£¨\frac{1}{4}£©^{2}£¨\frac{3}{4}£©•{C}_{2}^{2}£¨\frac{2}{3}£©^{2}$=$\frac{19}{64}$£¬
P£¨¦Î=1£©=P£¨X=0£©P£¨Y=1£©+P£¨X=1£©P£¨Y=0£©+P£¨X=1£©P£¨Y=2£©+P£¨X=2£©P£¨Y=1£©+P£¨X=3£©P£¨Y=2£©=${C}_{3}^{0}£¨\frac{3}{4}£©^{3}•{C}_{2}^{1}£¨\frac{2}{3}£©£¨\frac{1}{3}£©$+${C}_{3}^{1}£¨\frac{1}{4}£©£¨\frac{3}{4}£©^{2}•{C}_{2}^{0}£¨\frac{1}{3}£©^{2}$+${C}_{3}^{1}£¨\frac{1}{4}£©£¨\frac{3}{4}£©^{2}$•${C}_{2}^{2}£¨\frac{2}{3}£©^{2}$+${C}_{3}^{2}£¨\frac{1}{4}£©^{2}£¨\frac{3}{4}£©{C}_{2}^{1}£¨\frac{2}{3}£©£¨\frac{1}{3}£©$
+${C}_{3}^{3}£¨\frac{1}{4}£©^{3}•{C}_{2}^{2}£¨\frac{2}{3}£©^{2}$=$\frac{283}{576}$£¬
P£¨¦Î=2£©=P£¨X=0£©P£¨Y=2£©+P£¨X=2£©P£¨Y=0£©+P£¨X=3£©P£¨Y=1£©
=${C}_{3}^{0}£¨\frac{3}{4}£©^{3}{C}_{2}^{2}£¨\frac{2}{3}£©^{2}$+${C}_{3}^{2}£¨\frac{1}{4}£©^{2}£¨\frac{3}{4}£©{C}_{2}^{0}£¨\frac{1}{3}£©^{2}$+${C}_{3}^{3}£¨\frac{1}{4}£©^{3}{C}_{2}^{1}£¨\frac{2}{3}£©£¨\frac{1}{3}£©$=$\frac{121}{576}$£¬
P£¨¦Î=3£©=P£¨X=3£©P£¨Y=0£©=${C}_{3}^{3}£¨\frac{1}{4}£©^{3}{C}_{2}^{1}£¨\frac{2}{3}£©£¨\frac{1}{3}£©$=$\frac{1}{576}$£¬
¡à¦ÎµÄ·Ö²¼ÁÐΪ£º

 ¦Î 0 1 2 3
 P $\frac{19}{64}$ $\frac{283}{576}$ $\frac{121}{576}$ $\frac{1}{576}$
E¦Î=$0¡Á\frac{19}{576}+1¡Á\frac{283}{576}+2¡Á\frac{121}{576}$+3¡Á$\frac{1}{576}$=$\frac{11}{12}$£®

µãÆÀ ±¾Ì⿼²é¶ÀÁ¢ÐÔ¼ìÑéµÄÓ¦Ó㬿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼Áм°ÊýѧÆÚÍûµÄÇ󷨣¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²éº¯ÊýÓ뷽˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®º¯Êýy=£¨x+1£©3µ±x=-1ʱ£¨¡¡¡¡£©
A£®Óм«´óÖµB£®Óм«Ð¡Öµ
C£®¼ÈÎÞ¼«´óÖµ£¬Ò²ÎÞ¼«Ð¡ÖµD£®ÎÞ·¨ÅжÏ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÏÂÃæ¼¸ÖÖÍÆÀíÊǺÏÇéÍÆÀíµÄÊÇ¢Ù¢Ú¢Ü
¢ÙÓÉÔ²µÄÐÔÖÊÀà±È³öÇòµÄÓйØÐÔÖÊ£»
¢ÚÓÉÖ±½ÇÈý½ÇÐΡ¢µÈÑüÈý½ÇÐΡ¢µÈ±ßÈý½ÇÐεÄÄڽǺÍÊÇ180¡ã£¬¹éÄɳöËùÓÐÈý½ÇÐεÄÄڽǺͶ¼ÊÇ180¡ã£»
¢Û½ÌÊÒÄÚÓÐÒ»°ÑÒÎ×Ó»µÁË£¬Ôò¸Ã½ÌÊÒÄÚµÄËùÓÐÒÎ×Ó¶¼»µÁË£»
¢ÜÈý½ÇÐÎÄڽǺÍÊÇ180¡ã£¬ËıßÐÎÄڽǺÍÊÇ360¡ã£¬Îå±ßÐÎÄڽǺÍÊÇ540¡ã£¬Óɴ˵óö͹¶à±ßÐεÄÄڽǺÍÊÇ£¨n-2£©•180¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÇúÏß${C_1}£º\left\{\begin{array}{l}x=1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔÔ­µãΪ¼«µã£¬ÒÔxÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏß${C_2}£º\frac{1}{¦Ñ^2}=\frac{{{{cos}^2}¦È}}{2}+{sin^2}¦È$£®
£¨¢ñ£©Ð´³öÇúÏßC1µÄÆÕͨ·½³Ì£¬ÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÈôM£¨1£¬0£©£¬ÇÒÇúÏßC1ÓëÇúÏßC2½»ÓÚÁ½¸ö²»Í¬µÄµãA£¬B£¬Çó$\frac{|MA|•|MB|}{|AB|}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªº¯Êý$f£¨x£©=|{x+\sqrt{3+a}}$|-$|{x-\sqrt{1-a}}$|£¬ÆäÖÐ-3¡Üa¡Ü1£®
£¨¢ñ£©µ±a=1ʱ£¬½â²»µÈʽf£¨x£©¡Ý1£»
£¨¢ò£©¶ÔÓÚÈÎÒâ¦Á¡Ê[-3£¬1]£¬²»µÈʽf£¨x£©¡ÝmµÄ½â¼¯Îª¿Õ¼¯£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Éè$f£¨x£©=\frac{£¨4x+a£©lnx}{3x+1}$£¬ÇúÏßy=f£¨x£©Ôڵ㣨1£¬f£¨1£©£©´¦µÄÇÐÏßÓëÖ±Ïßx+y+1=0´¹Ö±£®
£¨1£©ÇóaµÄÖµ£»
£¨2£©Èô¶ÔÓÚÈÎÒâµÄx¡Ê[1£¬+¡Þ£©£¬f£¨x£©¡Üm£¨x-1£©ºã³ÉÁ¢£¬ÇómµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªº¯Êýf£¨x£©=ax2ex+blnx£¬ÇÒÔÚP£¨1£¬f£¨1£©£©´¦µÄÇÐÏß·½³ÌΪ£¨3e-1£©x-y+1-2e=0£¬g£¨x£©=£¨$\frac{2}{x}$-1£©ln£¨x-2£©+$\frac{lnx-1}{x}$+1£®
£¨1£©Çóa£¬bµÄÖµ£»
£¨2£©Ö¤Ã÷£ºf£¨x£©µÄ×îСֵÓëg£¨x£©µÄ×î´óÖµÏàµÈ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÔÚ¹«²î²»Îª0µÄµÈ²îÊýÁÐ{an}ÖУ¬a22=a3+a6£¬ÇÒa3Ϊa1Óëa11µÄµÈ±ÈÖÐÏ
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©Éèbn=£¨-1£©n$\frac{n}{£¨{a}_{n}-\frac{1}{2}£©£¨{a}_{n+1}-\frac{1}{2}£©}$£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªº¯Êý$f£¨x£©=\sqrt{1+{x^2}}$£¬x¡ÊR£®
£¨1£©Ö¤Ã÷¶Ô?a¡¢b¡ÊR£¬ÇÒa¡Ùb£¬×ÜÓУº|f£¨a£©-f£¨b£©|£¼|a-b|£»
£¨2£©Éèa¡¢b¡¢c¡ÊR£¬ÇÒ$a+b+c=f£¨2\sqrt{2}£©$£¬Ö¤Ã÷£ºa+b+c¡Ýab+bc+ca£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸