9£®ÒÑÖªÇúÏß${C_1}£º\left\{\begin{array}{l}x=1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔÔ­µãΪ¼«µã£¬ÒÔxÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏß${C_2}£º\frac{1}{¦Ñ^2}=\frac{{{{cos}^2}¦È}}{2}+{sin^2}¦È$£®
£¨¢ñ£©Ð´³öÇúÏßC1µÄÆÕͨ·½³Ì£¬ÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÈôM£¨1£¬0£©£¬ÇÒÇúÏßC1ÓëÇúÏßC2½»ÓÚÁ½¸ö²»Í¬µÄµãA£¬B£¬Çó$\frac{|MA|•|MB|}{|AB|}$µÄÖµ£®

·ÖÎö £¨¢ñ£©ÏûÈ¥²ÎÊýt£¬¼´¿ÉÇóµÃC1µÄÆÕͨ·½³Ì£¬ÓÉ$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}\right.$£¬»¯¼ò¼´¿ÉÇóµÃÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©½«ÇúÏßC1´úÈëÇúÏßC2µÄ·½³Ì£¬ÇóµÃAºÍBµã×ø±ê£¬¸ù¾ÝÁ½µãÖ®¼äµÄ¾àÀ빫ʽ£¬¼´¿ÉÇóµÃ$\frac{|MA|•|MB|}{|AB|}$µÄÖµ£®

½â´ð ½â£º£¨¢ñ£©½«y=$\frac{\sqrt{2}}{2}$t£¬´úÈëx=1+$\frac{\sqrt{2}}{2}$t£¬ÕûÀíµÃx-y-1=0£¬ÔòÇúÏßC1µÄÆÕͨ·½x-y-1=0£»
ÇúÏß${C_2}£º\frac{1}{¦Ñ^2}=\frac{{{{cos}^2}¦È}}{2}+{sin^2}¦È$£¬Ôò1=$\frac{{¦Ñ}^{2}co{s}^{2}¦È}{2}$+¦Ñ2sin2¦È£®
ÓÉ$\left\{\begin{array}{l}{x=¦Ñcos¦È}\\{y=¦Ñsin¦È}\end{array}\right.$£¬ÔòÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì$\frac{{x}^{2}}{2}+{y}^{2}=1$£»
£¨¢ò£©ÓÉ$\left\{\begin{array}{l}{y=x-1}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$£¬ÕûÀíµÃ£º3x2-4x=0£¬½âµÃ£ºx=0»òx=$\frac{4}{3}$£¬
ÔòA£¨0£¬-1£©£¬B£¨$\frac{4}{3}$£¬$\frac{1}{3}$£©£¬
¡àØ­MAØ­=$\sqrt{£¨1-0£©^{2}+£¨0+1£©^{2}}$=$\sqrt{2}$£¬Ø­MBØ­=$\sqrt{£¨\frac{4}{3}-1£©^{2}+£¨\frac{1}{3}-0£©^{2}}$=$\frac{\sqrt{2}}{3}$£¬
¡àØ­ABØ­=$\sqrt{£¨\frac{4}{3}-0£©^{2}+£¨\frac{1}{3}+1£©^{2}}$=$\frac{4\sqrt{2}}{3}$£¬
¡à$\frac{|MA|•|MB|}{|AB|}$=$\frac{\sqrt{2}¡Á\frac{\sqrt{2}}{3}}{\frac{4\sqrt{2}}{3}}$=$\frac{{\sqrt{2}}}{4}$£¬
¡à$\frac{|MA|•|MB|}{|AB|}$µÄÖµ$\frac{{\sqrt{2}}}{4}$£®

µãÆÀ ±¾Ì⿼²éÖ±ÏߵIJÎÊý·½³Ì£¬ÍÖÔ²µÄ¼«×ø±ê·½³Ì£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖªµãPÔÚÍÖÔ²C1£º$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{4}$=1ÉÏ£¬µãQÔÚÍÖÔ²C2£º$\frac{{y}^{2}}{9}$+x2=1ÉÏ£¬OÎª×ø±êÔ­µã£¬¼Ç¦Ø=$\overrightarrow{OP}$•$\overrightarrow{OQ}$£¬¼¯ºÏ{£¨P£¬Q£©|¦Ø=$\overrightarrow{OP}$•$\overrightarrow{OQ}$}£¬µ±¦ØÈ¡µÃ×î´óֵʱ£¬¼¯ºÏÖзûºÏÌõ¼þµÄÔªËØÓм¸¸ö£¨¡¡¡¡£©
A£®2¸öB£®4¸öC£®8¸öD£®ÎÞÊý¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªº¯Êýf£¨x£©=$\frac{1}{2}$x2-x+alnx£¨a£¾0£©ÓÐÁ½¸ö¼«Öµµãx1¡¢x2£¬ÇÒx1£¼x2£®
£¨1£©ÇóaµÄȡֵ·¶Î§£»
£¨2£©Ö¤Ã÷£ºf£¨x1£©+f£¨x2£©£¾$\frac{-3-2ln2}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®¼ºÖªËÄËó×¶£®ËüµÄµ×ÃæÊDZ߳¤Îª2µÄÕý·½ÐΣ®Æä¸©ÊÓͼÈçͼËùʾ£¬×óÊÓͼΪֱ½ÇÈý½ÇÐΣ¬ÔòËÄÀâ×¶µÄÍâ½ÓÇòµÄ±íÃæè×Ϊ£¨¡¡¡¡£©
A£®8¦ÐB£®12¦ÐC£®4¦ÐD£®16¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxoyÖУ¬ÒÔOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖᣬȡÏàͬµÄµ¥Î»³¤¶È£¬½¨Á¢¼«×ø±êϵ£¬ÒÑÖªÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=sin¦Á\\ y=cos2¦Á\end{array}\right.$£¬£¨$¦Á¡Ê[{0£¬\frac{¦Ð}{2}}]$£¬¦ÁΪ²ÎÊý£©£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ$¦È=-\frac{¦Ð}{6}$£¬ÇóÇúÏßC1ÓëÇúÏßC2µÄ½»µãµÄÖ±½Ç×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªº¯Êýf£¨x£©=lnx-mx2+£¨1-2m£©x+1
£¨I£©µ±m=1ʱ£¬ÇóÇúÏßf£¨x£©Ôڵ㣨1£¬f£¨1£©£©´¦µÄÇÐÏß·½³Ì£»
£¨II£©Èôm¡ÊZ£¬¹ØÓÚxµÄ²»µÈʽf£¨x£©¡Ü0ºã³ÉÁ¢£¬ÇómµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Ä³Ð£¾ÙÐи߶þÀí¿ÆÑ§ÉúµÄÊýѧÓëÎïÀí¾ºÈü£¬²¢´ÓÖгéÈ¡72ÃûѧÉú½øÐгɼ¨·ÖÎö£¬ËùµÃѧÉúµÄ¼°¸ñÇé¿öͳ¼ÆÈç±í£º
ÎïÀí¼°¸ñÎïÀí²»¼°¸ñºÏ¼Æ
Êýѧ¼°¸ñ28836
Êýѧ²»¼°¸ñ162036
ºÏ¼Æ442872
£¨1£©¸ù¾Ý±íÖÐÊý¾Ý£¬ÅжÏÊÇ·ñÊÇ99%µÄ°ÑÎÕÈÏΪ¡°Êýѧ¼°¸ñÓëÎïÀí¼°¸ñÓйء±£»
£¨2£©ÈôÒÔ³éÈ¡Ñù±¾µÄƵÂÊΪ¸ÅÂÊ£¬ÏÖÔÚ¸ÃУ¸ß¶þÀí¿ÆÑ§ÉúÖУ¬´ÓÊýѧ¼°¸ñµÄѧÉúÖÐËæ»ú³éÈ¡3ÈË£¬¼ÇXΪÕâ3ÈËÖÐÎïÀí²»¼°¸ñµÄÈËÊý£¬´ÓÊýѧ²»¼°¸ñѧÉúÖÐËæ»ú³éÈ¡2ÈË£¬¼ÇYΪÕâ2ÈËÖÐÎïÀí²»¼°¸ñµÄÈËÊý£¬¼Ç¦Î=|X-Y|£¬Çó¦ÎµÄ·Ö²¼Áм°ÊýѧÆÚÍû£®
¸½£ºx2=$\frac{n£¨{n}_{11}{n}_{22}-{n}_{21}{n}_{12}£©^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$£®
P£¨X2¡Ýk£©0.1500.1000.0500.010
k2.0722.7063.8416.635

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®²»µÈʽ32x+a•3x+b£¼0£¨a¡¢b¡ÊR£©µÄ½â¼¯ÊÇ{x|0£¼x£¼3}£¬Ôòa+bµÈÓÚ-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÒÑÖªf£¨x£©=|ax-4|-|ax+8|£¬a¡ÊR£¬Èôf£¨x£©¡Ükºã³É£¬ÇókµÄȡֵ·¶Î§[12£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸