精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=lnx-mx2+(1-2m)x+1
(I)当m=1时,求曲线f(x)在点(1,f(1))处的切线方程;
(II)若m∈Z,关于x的不等式f(x)≤0恒成立,求m的最小值.

分析 (Ⅰ)当m=1时,$f′(x)=\frac{1}{x}-2x-1$,故切线的斜率k=f′(1)=-2,切点为(1,-1),即2x+y-1=0为所求.
(Ⅱ)$f′(x)=\frac{1}{x}-2mx+1-2m$=$\frac{-(2mx-1)(x+1)}{x}$,分m≤0,m>0,求出f(x)的最大值为f($\frac{1}{2m}$)≤0,即4mln2m≥1,可得整数m的最小值.

解答 解:(Ⅰ)当m=1时,$f′(x)=\frac{1}{x}-2x-1$,故切线的斜率k=f′(1)=-2
切点为(1,-1),曲线f(x)在点(1,f(1))处的切线方程为y+1=-2(x-1),
即2x+y-1=0为所求.
(Ⅱ)∵f(x)=lnx-mx2+(1-2m)x+1(x>0),
$f′(x)=\frac{1}{x}-2mx+1-2m$=$\frac{-(2mx-1)(x+1)}{x}$
当m≤0时,f'(x)>0恒成立,f(x)单调递增,无最大值,∴f(x)≤0不恒成立,
当m>0时,∴x∈(0,$\frac{1}{2m}$)时,f'(x)>0;∈($\frac{1}{2m}$,+∞)时,f′(x)<0,
∴f(x)在区间(0,$\frac{1}{2m}$)上单调递增区间($\frac{1}{2m}$,+∞)上单调递减,
f(x)的最大值为f($\frac{1}{2m}$)≤0,即4mln2m≥1,
∵m∈Z,∴显然,m=1时,4ln2≥1成立,
∴m的最小值为1.

点评 本题考查了利用导函数求函数的单调性和导数的几何意义,对恒成立问题的转化和对参数的分类讨论.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.在1907年的一项关于16艘轮船的研究中,船的吨位区间从192t~3246t,船员的人数从5人到32人,由船员人数关于吨位的回归分析得到如下结果:$\widehat{y}$=9.5+0.0062x,假定的两艘轮船的吨位相差1000t,船员平均人数相差6人,对于最小的船估计的船员人数是11人,对于最大的船估计的船员人数是31人.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知f($\frac{1}{{2}^{n+1}}$)=$\frac{1}{2}$f($\frac{1}{{2}^{n}}$)-$\frac{1}{{2}^{n+1}}$,f($\frac{1}{2}$)=-$\frac{1}{2}$,令Un=$\frac{f(\frac{1}{{2}^{n}})}{n}$,则{Un}的前n项和Tn=$\frac{1}{{2}^{n}}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=|log4x|,实数m、n满足0<m<n,且f(m)=f(n),若f(x)在[m2,n]的最大值为2,则$\frac{n}{m}$=16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知曲线${C_1}:\left\{\begin{array}{l}x=1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数),以原点为极点,以x正半轴为极轴,建立极坐标系,曲线${C_2}:\frac{1}{ρ^2}=\frac{{{{cos}^2}θ}}{2}+{sin^2}θ$.
(Ⅰ)写出曲线C1的普通方程,曲线C2的直角坐标方程;
(Ⅱ)若M(1,0),且曲线C1与曲线C2交于两个不同的点A,B,求$\frac{|MA|•|MB|}{|AB|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在平面直角坐标系xoy中,已知点A(0,-2),点B(1,-1),P为圆x2+y2=2上一动点,则$\frac{{|\overrightarrow{PB}|}}{{|\overrightarrow{PA}|}}$的最大值是$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设$f(x)=\frac{(4x+a)lnx}{3x+1}$,曲线y=f(x)在点(1,f(1))处的切线与直线x+y+1=0垂直.
(1)求a的值;
(2)若对于任意的x∈[1,+∞),f(x)≤m(x-1)恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$+2$\overrightarrow{b}$=(2,-4),3$\overrightarrow{a}$-$\overrightarrow{b}$=(-8,16),则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角的大小为π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,点P满足|PF1|-|PF2|=2a,若$\overrightarrow{PM}$+$\overrightarrow{{F}_{1}M}$=$\overrightarrow{0}$,且M(0,b),则双曲线C的渐近线方程为(  )
A.y=±2xB.y=±$\sqrt{5}$xC.y=±2$\sqrt{2}$xD.y=±$\sqrt{3}$x

查看答案和解析>>

同步练习册答案